scispace - formally typeset
Search or ask a question
Author

Aman Kansal

Bio: Aman Kansal is an academic researcher from Microsoft. The author has contributed to research in topics: Wireless sensor network & Data center. The author has an hindex of 54, co-authored 159 publications receiving 14790 citations. Previous affiliations of Aman Kansal include University of California, Los Angeles & Carnegie Mellon University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors have developed abstractions to characterize the complex time varying nature of such sources with analytically tractable models and use them to address key design issues.
Abstract: Power management is an important concern in sensor networks, because a tethered energy infrastructure is usually not available and an obvious concern is to use the available battery energy efficiently. However, in some of the sensor networking applications, an additional facility is available to ameliorate the energy problem: harvesting energy from the environment. Certain considerations in using an energy harvesting source are fundamentally different from that in using a battery, because, rather than a limit on the maximum energy, it has a limit on the maximum rate at which the energy can be used. Further, the harvested energy availability typically varies with time in a nondeterministic manner. While a deterministic metric, such as residual battery, suffices to characterize the energy availability in the case of batteries, a more sophisticated characterization may be required for a harvesting source. Another issue that becomes important in networked systems with multiple harvesting nodes is that different nodes may have different harvesting opportunity. In a distributed application, the same end-user performance may be achieved using different workload allocations, and resultant energy consumptions at multiple nodes. In this case, it is important to align the workload allocation with the energy availability at the harvesting nodes. We consider the above issues in power management for energy-harvesting sensor networks. We develop abstractions to characterize the complex time varying nature of such sources with analytically tractable models and use them to address key design issues. We also develop distributed methods to efficiently use harvested energy and test these both in simulation and experimentally on an energy-harvesting sensor network, prototyped for this work.

1,535 citations

Journal Article
TL;DR: In this article, the authors describe key issues and tradeoffs which arise in the design of solar energy harvesting, wireless embedded systems and present the design, implementation, and performance evaluation of Heliomote, their prototype that addresses several of these issues.
Abstract: Sustainable operation of battery powered wireless embedded systems (such as sensor nodes) is a key challenge, and considerable research effort has been devoted to energy optimization of such systems. Environmental energy harvesting, in particular solar based, has emerged as a viable technique to supplement battery supplies. However, designing an efficient solar harvesting system to realize the potential benefits of energy harvesting requires an in-depth understanding of several factors. For example, solar energy supply is highly time varying and may not always be sufficient to power the embedded system. Harvesting components, such as solar panels, and energy storage elements, such as batteries or ultracapacitors, have different voltage-current characteristics, which must be matched to each other as well as the energy requirements of the system to maximize harvesting efficiency. Further, battery nonidealities, such as self-discharge and round trip efficiency, directly affect energy usage and storage decisions. The ability of the system to modulate its power consumption by selectively deactivating its sub-components also impacts the overall power management architecture. This paper describes key issues and tradeoffs which arise in the design of solar energy harvesting, wireless embedded systems and presents the design, implementation, and performance evaluation of Heliomote, our prototype that addresses several of these issues. Experimental results demonstrate that Heliomote, which behaves as a plug-in to the Berkeley/Crossbow motes and autonomously manages energy harvesting and storage, enables near-perpetual, harvesting aware operation of the sensor node.

1,063 citations

Proceedings Article
07 Dec 2008
TL;DR: The study reveals the energy performance trade-offs for consolidation and shows that optimal operating points exist and the challenges in finding effective solutions to the consolidation problem.
Abstract: Consolidation of applications in cloud computing environments presents a significant opportunity for energy optimization. As a first step toward enabling energy efficient consolidation, we study the inter-relationships between energy consumption, resource utilization, and performance of consolidated workloads. The study reveals the energy performance trade-offs for consolidation and shows that optimal operating points exist. We model the consolidation problem as a modified bin packing problem and illustrate it with an example. Finally, we outline the challenges in finding effective solutions to the consolidation problem.

858 citations

Proceedings ArticleDOI
13 Apr 2010
TL;DR: Q-Clouds, a QoS-aware control framework that tunes resource allocations to mitigate performance interference effects, is developed, which uses online feedback to build a multi-input multi-output (MIMO) model that captures performance interference interactions, and uses it to perform closed loop resource management.
Abstract: Cloud computing offers users the ability to access large pools of computational and storage resources on demand. Multiple commercial clouds already allow businesses to replace, or supplement, privately owned IT assets, alleviating them from the burden of managing and maintaining these facilities. However, there are issues that must be addressed before this vision of utility computing can be fully realized. In existing systems, customers are charged based upon the amount of resources used or reserved, but no guarantees are made regarding the application level performance or quality-of-service (QoS) that the given resources will provide. As cloud providers continue to utilize virtualization technologies in their systems, this can become problematic. In particular, the consolidation of multiple customer applications onto multicore servers introduces performance interference between collocated workloads, significantly impacting application QoS. To address this challenge, we advocate that the cloud should transparently provision additional resources as necessary to achieve the performance that customers would have realized if they were running in isolation. Accordingly, we have developed Q-Clouds, a QoS-aware control framework that tunes resource allocations to mitigate performance interference effects. Q-Clouds uses online feedback to build a multi-input multi-output (MIMO) model that captures performance interference interactions, and uses it to perform closed loop resource management. In addition, we utilize this functionality to allow applications to specify multiple levels of QoS as application Q-states. For such applications, Q-Clouds dynamically provisions underutilized resources to enable elevated QoS levels, thereby improving system efficiency. Experimental evaluations of our solution using benchmark applications illustrate the benefits: performance interference is mitigated completely when feasible, and system utilization is improved by up to 35% using Q-states.

614 citations

Proceedings ArticleDOI
10 Jun 2010
TL;DR: Joulemeter builds power models to infer power consumption from resource usage at runtime and identifies the challenges that arise when applying such models for VM power metering, and shows how existing instrumentation in server hardware and hypervisors can be used to build the required power models on real platforms with low error.
Abstract: Virtualization is often used in cloud computing platforms for its several advantages in efficiently managing resources. However, virtualization raises certain additional challenges, and one of them is lack of power metering for virtual machines (VMs). Power management requirements in modern data centers have led to most new servers providing power usage measurement in hardware and alternate solutions exist for older servers using circuit and outlet level measurements. However, VM power cannot be measured purely in hardware. We present a solution for VM power metering, named Joulemeter. We build power models to infer power consumption from resource usage at runtime and identify the challenges that arise when applying such models for VM power metering. We show how existing instrumentation in server hardware and hypervisors can be used to build the required power models on real platforms with low error. Our approach is designed to operate with extremely low runtime overhead while providing practically useful accuracy. We illustrate the use of the proposed metering capability for VM power capping, a technique to reduce power provisioning costs in data centers. Experiments are performed on server traces from several thousand production servers, hosting Microsoft's real-world applications such as Windows Live Messenger. The results show that not only does VM power metering allows virtualized data centers to achieve the same savings that non-virtualized data centers achieved through physical server power capping, but also that it enables further savings in provisioning costs with virtualization.

604 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations

Journal ArticleDOI
TL;DR: This survey presents a comprehensive review of the recent literature since the publication of a survey on sensor networks, and gives an overview of several new applications and then reviews the literature on various aspects of WSNs.

5,626 citations

Journal ArticleDOI
TL;DR: A survey of cloud computing is presented, highlighting its key concepts, architectural principles, state-of-the-art implementation as well as research challenges to provide a better understanding of the design challenges of cloud Computing and identify important research directions in this increasingly important area.
Abstract: Cloud computing has recently emerged as a new paradigm for hosting and delivering services over the Internet. Cloud computing is attractive to business owners as it eliminates the requirement for users to plan ahead for provisioning, and allows enterprises to start from the small and increase resources only when there is a rise in service demand. However, despite the fact that cloud computing offers huge opportunities to the IT industry, the development of cloud computing technology is currently at its infancy, with many issues still to be addressed. In this paper, we present a survey of cloud computing, highlighting its key concepts, architectural principles, state-of-the-art implementation as well as research challenges. The aim of this paper is to provide a better understanding of the design challenges of cloud computing and identify important research directions in this increasingly important area.

3,465 citations

Journal ArticleDOI
01 Sep 2012
TL;DR: A survey of technologies, applications and research challenges for Internetof-Things is presented, in which digital and physical entities can be linked by means of appropriate information and communication technologies to enable a whole new class of applications and services.
Abstract: The term ‘‘Internet-of-Things’’ is used as an umbrella keyword for covering various aspects related to the extension of the Internet and the Web into the physical realm, by means of the widespread deployment of spatially distributed devices with embedded identification, sensing and/or actuation capabilities. Internet-of-Things envisions a future in which digital and physical entities can be linked, by means of appropriate information and communication technologies, to enable a whole new class of applications and services. In this article, we present a survey of technologies, applications and research challenges for Internetof-Things.

3,172 citations

Journal ArticleDOI
01 May 2009
TL;DR: This paper breaks down the energy consumption for the components of a typical sensor node, and discusses the main directions to energy conservation in WSNs, and presents a systematic and comprehensive taxonomy of the energy conservation schemes.
Abstract: In the last years, wireless sensor networks (WSNs) have gained increasing attention from both the research community and actual users. As sensor nodes are generally battery-powered devices, the critical aspects to face concern how to reduce the energy consumption of nodes, so that the network lifetime can be extended to reasonable times. In this paper we first break down the energy consumption for the components of a typical sensor node, and discuss the main directions to energy conservation in WSNs. Then, we present a systematic and comprehensive taxonomy of the energy conservation schemes, which are subsequently discussed in depth. Special attention has been devoted to promising solutions which have not yet obtained a wide attention in the literature, such as techniques for energy efficient data acquisition. Finally we conclude the paper with insights for research directions about energy conservation in WSNs.

2,546 citations