scispace - formally typeset
Search or ask a question
Author

Amandeep K. Sra

Bio: Amandeep K. Sra is an academic researcher from University of Texas Southwestern Medical Center. The author has contributed to research in topics: Zinc ferrite & Magnetic nanoparticles. The author has an hindex of 2, co-authored 2 publications receiving 2887 citations.

Papers
More filters
Book ChapterDOI
TL;DR: The physical principles underlying some current biomedical applications of magnetic nanoparticles are reviewed and the relevant physics of magnetic materials and their responses to applied magnetic fields are surveyed.
Abstract: The physical principles underlying some current biomedical applications of magnetic nanoparticles are reviewed. Starting from well-known basic concepts, and drawing on examples from biology and biomedicine, the relevant physics of magnetic materials and their responses to applied magnetic fields are surveyed. The way these properties are controlled and used is illustrated with reference to (i) magnetic separation of labelled cells and other biological entities; (ii) therapeutic drug, gene and radionuclide delivery; (iii) radio frequency methods for the catabolism of tumours via hyperthermia; and (iv) contrast enhancement agents for magnetic resonance imaging applications. Future prospects are also discussed.

2,815 citations

Journal ArticleDOI
TL;DR: Mixed spinel hydrophobic ZnxFe1-xO x Fe2O3 nanoparticles encapsulated in polymeric micelles exhibited increased T2 relaxivity and sensitivity of detection over clinically used Feridex.

146 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.

6,207 citations

Journal ArticleDOI
TL;DR: This review describes recent advances in the synthesis of biomolecule-nanoparticle/nanorod hybrid systems and the application of such assemblies in the generation of 2D and 3D ordered structures in solutions and on surfaces.
Abstract: Nanomaterials, such as metal or semiconductor nanoparticles and nanorods, exhibit similar dimensions to those of biomolecules, such as proteins (enzymes, antigens, antibodies) or DNA. The integration of nanoparticles, which exhibit unique electronic, photonic, and catalytic properties, with biomaterials, which display unique recognition, catalytic, and inhibition properties, yields novel hybrid nanobiomaterials of synergetic properties and functions. This review describes recent advances in the synthesis of biomolecule-nanoparticle/nanorod hybrid systems and the application of such assemblies in the generation of 2D and 3D ordered structures in solutions and on surfaces. Particular emphasis is directed to the use of biomolecule-nanoparticle (metallic or semiconductive) assemblies for bioanalytical applications and for the fabrication of bioelectronic devices.

2,334 citations

Journal ArticleDOI
TL;DR: A background on applications of MNPs as MR imaging contrast agents and as carriers for drug delivery and an overview of the recent developments in this area of research are provided.

2,295 citations

Journal ArticleDOI
O.V. Salata1
TL;DR: This brief review tries to summarise the most recent developments in the field of applied nanomaterials, in particular their application in biology and medicine, and discusses their commercialisation prospects.
Abstract: Nanomaterials are at the leading edge of the rapidly developing field of nanotechnology. Their unique size-dependent properties make these materials superior and indispensable in many areas of human activity. This brief review tries to summarise the most recent developments in the field of applied nanomaterials, in particular their application in biology and medicine, and discusses their commercialisation prospects.

2,086 citations

Journal ArticleDOI
TL;DR: The design parameters that affect MNP performance in vivo are summarized, including the physicochemical properties and nanoparticle surface modifications, such as MNP coating and targeting ligand functionalizations that can enhance MNP management of biological barriers.

1,659 citations