scispace - formally typeset
Search or ask a question
Author

Amar Nath Ghosh

Bio: Amar Nath Ghosh is an academic researcher. The author has contributed to research in topics: Lyngbya majuscula. The author has an hindex of 1, co-authored 1 publications receiving 124 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Pro- and eukaryotic algal genera, i.e. Lyngbya majuscula, Spirulina subsalsa, and Rhizoclonium hieroglyphicum were used for bio-recovery of gold out of aqueous solution indicating quick metabolic independent binding of Au to the algae followed by active accumulation and subsequent reduction.
Abstract: Pro- and eukaryotic algal genera, i.e. Lyngbya majuscula, Spirulina subsalsa (Cyanophyceae) and Rhizoclonium hieroglyphicum (Chlorophyceae), were used for bio-recovery of gold (Au) out of aqueous solution. Au (III) spiked with 198Au was used for the experiment. Batch laboratory experiments indicated quick metabolic independent binding of Au to the algae followed by active accumulation and subsequent reduction. Gold accumulation by different algal genera was found in order of R. hieroglyphicum > L. majuscula > S. subsalsa (3.28, 1.93 and 1.73 mg g-1, respectively). It was observed that the algal biomass and the media used for the experiment turned purple in colour indicating reduction of Au (III) to Au (0) at intra- and extracellular level. This was confirmed by TEM studies of L. majuscula biomass exposed in HAuCl4 solution where <20-nm-sized gold particles were found both inside as well as on the surface of the cell. Up to 90–100% of accumulated gold was recovered from the algal biomass by using nitric acid and acidic thiourea solution.

148 citations


Cited by
More filters
Journal Article
TL;DR: An overview of silver nanoparticle preparation by physical, chemical, and biological synthesis is presented to reflect on the current state and future prospects, especially the potentials and limitations of the above mentioned techniques for industries.
Abstract: Silver nanoparticles (NPs) have been the subjects of researchers because of their unique properties (e.g., size and shape depending optical, antimicrobial, and electrical properties). A variety of preparation techniques have been reported for the synthesis of silver NPs; notable examples include, laser ablation, gamma irradiation, electron irradiation, chemical reduction, photochemical methods, microwave processing, and biological synthetic methods. This review presents an overview of silver nanoparticle preparation by physical, chemical, and biological synthesis. The aim of this review article is, therefore, to reflect on the current state and future prospects, especially the potentials and limitations of the above mentioned techniques for industries.

1,141 citations

Journal ArticleDOI
TL;DR: The key applications reviewed here include biomedical applications, especially antimicrobial applications, but also imaging applications, catalytic applications such as reduction of environmental contaminants, and electrochemical applications including sensing.

363 citations

Journal ArticleDOI
01 Dec 2017
TL;DR: This review encompasses the recent advances in the GS of MNPs using plants, animals and microorganisms and analyzes the key points and further discusses the pros and cons of GS in respect of chemical synthesis.
Abstract: The green synthesis (GS) of different metallic nanoparticles (MNPs) has re-evaluated plants, animals and microorganisms for their natural potential to reduce metallic ions into neutral atoms at no expense of toxic and hazardous chemicals. Contrary to chemically synthesized MNPs, GS offers advantages of enhanced biocompatibility and thus has better scope for biomedical applications. Plant, animals and microorganisms belonging to lower and higher taxonomic groups have been experimented for GS of MNPs, such as gold (Au), silver (Ag), copper oxide (CuO), zinc oxide (ZnO), iron (Fe2O3), palladium (Pd), platinum (Pt), nickel oxide (NiO) and magnesium oxide (MgO). Among the different plant groups used for GS, angiosperms and algae have been explored the most with great success. GS with animal-derived biomaterials, such as chitin, silk (sericin, fibroin and spider silk) or cell extract of invertebrates have also been reported. Gram positive and gram negative bacteria, different fungal species and virus particles have also shown their abilities in the reduction of metal ions. However, not a thumb rule, most of the reducing agents sourced from living world also act as capping agents and render MNPs less toxic or more biocompatible. The most unexplored area so far in GS is the mechanism studies for different natural reducing agents expect for few of them, such as tea and neem plants. This review encompasses the recent advances in the GS of MNPs using plants, animals and microorganisms and analyzes the key points and further discusses the pros and cons of GS in respect of chemical synthesis.

292 citations

Journal ArticleDOI
TL;DR: This review examines the biological mechanism and enzymatic process of nanoparticle production of biological systems used in nanoparticle synthesis.
Abstract: Recent developments in the biosynthesis of nanomaterials have demonstrated the important role of biological systems and microorganisms in nanoscience and nanotechnology. These organisms show a unique potential in environmentally friendly production and accumulation of nanoparticles with different shapes and sizes. Therefore, researchers in the field of nanoparticle synthesis are focusing their attention to biological systems. In order to obtain different applied chemical compositions, controlled monodispersity, desired morphologies (e.g., amorphous, spherical, needles, crystalline, triangular, and hexagonal), and interested particle size, they have investigated the biological mechanism and enzymatic process of nanoparticle production. In this review, most of these organisms used in nanoparticle synthesis are shown.

254 citations

Journal ArticleDOI
TL;DR: The present paper reviews the information available on algae-mediated biosynthesis of various NPs, their characterization and applications in different domains and concludes that algae are an appealing platform for the production of diverse NMs.

247 citations