scispace - formally typeset
Search or ask a question
Author

Amaury Lendasse

Bio: Amaury Lendasse is an academic researcher from University of Houston. The author has contributed to research in topics: Extreme learning machine & Feature selection. The author has an hindex of 39, co-authored 315 publications receiving 7167 citations. Previous affiliations of Amaury Lendasse include Ikerbasque & FedEx Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed OP-ELM methodology performs several orders of magnitude faster than the other algorithms used in this brief, except the original ELM, and is still able to maintain an accuracy that is comparable to the performance of the SVM.
Abstract: In this brief, the optimally pruned extreme learning machine (OP-ELM) methodology is presented. It is based on the original extreme learning machine (ELM) algorithm with additional steps to make it more robust and generic. The whole methodology is presented in detail and then applied to several regression and classification problems. Results for both computational time and accuracy (mean square error) are compared to the original ELM and to three other widely used methodologies: multilayer perceptron (MLP), support vector machine (SVM), and Gaussian process (GP). As the experiments for both regression and classification illustrate, the proposed OP-ELM methodology performs several orders of magnitude faster than the other algorithms used in this brief, except the original ELM. Despite the simplicity and fast performance, the OP-ELM is still able to maintain an accuracy that is comparable to the performance of the SVM. A toolbox for the OP-ELM is publicly available online.

745 citations

Book
30 May 2013
TL;DR: This special issue includes eight original works that detail the further developments of ELMs in theories, applications, and hardware implementation.
Abstract: This special issue includes eight original works that detail the further developments of ELMs in theories, applications, and hardware implementation. In "Representational Learning with ELMs for Big Data," Liyanaarachchi Lekamalage Chamara Kasun, Hongming Zhou, Guang-Bin Huang, and Chi Man Vong propose using the ELM as an auto-encoder for learning feature representations using singular values. In "A Secure and Practical Mechanism for Outsourcing ELMs in Cloud Computing," Jiarun Lin, Jianping Yin, Zhiping Cai, Qiang Liu, Kuan Li, and Victor C.M. Leung propose a method for handling large data applications by outsourcing to the cloud that would dramatically reduce ELM training time. In "ELM-Guided Memetic Computation for Vehicle Routing," Liang Feng, Yew-Soon Ong, and Meng-Hiot Lim consider the ELM as an engine for automating the encapsulation of knowledge memes from past problem-solving experiences. In "ELMVIS: A Nonlinear Visualization Technique Using Random Permutations and ELMs," Anton Akusok, Amaury Lendasse, Rui Nian, and Yoan Miche propose an ELM method for data visualization based on random permutations to map original data and their corresponding visualization points. In "Combining ELMs with Random Projections," Paolo Gastaldo, Rodolfo Zunino, Erik Cambria, and Sergio Decherchi analyze the relationships between ELM feature-mapping schemas and the paradigm of random projections. In "Reduced ELMs for Causal Relation Extraction from Unstructured Text," Xuefeng Yang and Kezhi Mao propose combining ELMs with neuron selection to optimize the neural network architecture and improve the ELM ensemble's computational efficiency. In "A System for Signature Verification Based on Horizontal and Vertical Components in Hand Gestures," Beom-Seok Oh, Jehyoung Jeon, Kar-Ann Toh, Andrew Beng Jin Teoh, and Jaihie Kim propose a novel paradigm for hand signature biometry for touchless applications without the need for handheld devices. Finally, in "An Adaptive and Iterative Online Sequential ELM-Based Multi-Degree-of-Freedom Gesture Recognition System," Hanchao Yu, Yiqiang Chen, Junfa Liu, and Guang-Bin Huang propose an online sequential ELM-based efficient gesture recognition algorithm for touchless human-machine interaction.

705 citations

Journal ArticleDOI
TL;DR: A global input selection strategy that combines forward selection, backward elimination (or pruning) and forward-backward selection is introduced and is used to optimize the three input selection criteria (k-NN, MI and NNE).

368 citations

Journal ArticleDOI
TL;DR: This paper presents a complete approach to a successful utilization of a high-performance extreme learning machines (ELM) Toolbox for Big Data, and summarizes recent advantages in algorithmic performance; gives a fresh view on the ELM solution in relation to the traditional linear algebraic performance; and reaps the latest software and hardware performance achievements.
Abstract: This paper presents a complete approach to a successful utilization of a high-performance extreme learning machines (ELMs) Toolbox for Big Data. It summarizes recent advantages in algorithmic performance; gives a fresh view on the ELM solution in relation to the traditional linear algebraic performance; and reaps the latest software and hardware performance achievements. The results are applicable to a wide range of machine learning problems and thus provide a solid ground for tackling numerous Big Data challenges. The included toolbox is targeted at enabling the full potential of ELMs to the widest range of users.

225 citations

Journal ArticleDOI
TL;DR: The mutual information measures the information content in input variables with respect to the model output, without making any assumption on the model that will be used; it is suitable for nonlinear modelling and allows therefore a greater interpretability of the results.

222 citations


Cited by
More filters
Journal Article
TL;DR: A new technique called t-SNE that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map, a variation of Stochastic Neighbor Embedding that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map.
Abstract: We present a new technique called “t-SNE” that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large datasets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of datasets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the datasets.

30,124 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: A new learning algorithm called ELM is proposed for feedforward neural networks (SLFNs) which randomly chooses hidden nodes and analytically determines the output weights of SLFNs which tends to provide good generalization performance at extremely fast learning speed.

10,217 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2002

9,314 citations