scispace - formally typeset
Search or ask a question
Author

Amelia R. Ginardi

Bio: Amelia R. Ginardi is an academic researcher from Mayo Clinic. The author has contributed to research in topics: Cytotoxic T cell & Antigen. The author has an hindex of 4, co-authored 4 publications receiving 285 citations.
Topics: Cytotoxic T cell, Antigen, CTL*, MUC1, Immunotherapy

Papers
More filters
Journal ArticleDOI
TL;DR: The MET mice appropriately mimic the human condition and are an excellent model with which to elucidate the native immune responses that develop during tumor progression and to develop effective antitumor vaccine strategies.
Abstract: Pancreatic cancer is a highly aggressive, treatment refractory cancer and is the fourth leading cause of death in the United States. In humans, 90% of pancreatic adenocarcinomas overexpress altered forms of a tumor-specific Ag, mucin 1 (MUC1; an epithelial mucin glycoprotein), which is a potential target for immunotherapy. We have established a clinically relevant animal model for pancreatic cancer by developing a double transgenic mouse model (called MET) that expresses human MUC1 as self molecule and develops spontaneous tumors of the pancreas. These mice exhibit acinar cell dysplasia at birth, which progresses to microadenomas and acinar cell carcinomas. The tumors express large amounts of underglycosylated MUC1 similar to humans. Tumor-bearing MET mice develop low affinity MUC1-specific CTLs that have no effect on the spontaneously occurring pancreatic tumors in vivo. However, adoptive transfer of these CTLs was able to completely eradicate MUC1-expressing injectable tumors in MUC1 transgenic mice, and these mice developed long-term immunity. These CTLs were MHC class I restricted and recognized peptide epitopes in the immunodominant tandem repeat region of MUC1. The MET mice appropriately mimic the human condition and are an excellent model with which to elucidate the native immune responses that develop during tumor progression and to develop effective antitumor vaccine strategies.

94 citations

Journal ArticleDOI
TL;DR: Using an injectable breast cancer model, the authors show that targeting a single tumor antigen may not be an effective antitumor treatment, but that immunization with dendritic cells fed with whole tumor lysate is effective in breaking tolerance and protecting mice from subsequent tumor challenge.
Abstract: Human mucin 1 (MUC1) is an epithelial mucin glycoprotein that is overexpressed in 90% of all adenocarcinomas including breast, lung, pancreas, prostate, stomach, colon, and ovary. MUC1 is a target for immune intervention, because, in patients with solid adenocarcinomas, low-level cellular and humoral immune responses to MUC1 have been observed, which are not sufficiently strong to eradicate the growing tumor. The hypothesis for this study is that enhancing MUC1-specific immunity will result in antitumor immunity. To test this, the authors have developed a clinically relevant breast cancer model that demonstrates peripheral and central tolerance to MUC1 and develops spontaneous tumors of the mammary gland. In these mice, the authors tested a vaccine formulation comprised of liposomal-MUC1 lipopeptide and human recombinant interleukin-2. Results indicate that when compared with untreated mice, immunized mice develop T cells that express intracellular IFN-gamma, are reactive with MHC class I H-2Db/MUC1 tetramer, and are cytotoxic against MUC1-expressing tumor cells in vitro. The presence of MUC1-specific CTL did not translate into a clinical response as measured by time of tumor onset, tumor burden, and survival. The authors demonstrate that some of the immune-evasion mechanisms used by the tumor cells include downregulation of MHC-class I molecule, expression of TGF-beta2, and decrease in IFN-gamma -expressing effector T cells as tumors progress. Finally, utilizing an injectable breast cancer model, the authors show that targeting a single tumor antigen may not be an effective antitumor treatment, but that immunization with dendritic cells fed with whole tumor lysate is effective in breaking tolerance and protecting mice from subsequent tumor challenge. A physiologically relevant spontaneous breast cancer model has been developed to test improved immunotherapeutic approaches.

93 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the CTL tolerance could be reversed at least in vitro with the use of anti-CD40 co-stimulation, which indicates theuse of several immune evasion mechanisms by tumor cells to evade CTL killing.
Abstract: Pancreatic cancer is a highly aggressive, treatment refractory disease and is the fourth leading cause of death in the United States. In humans, 90% of pancreatic adenocarcinomas over-express altered forms of a tumor-associated antigen, MUC1 (an epithelial mucin glycoprotein), which is a target for immunotherapy. Using a clinically relevant mouse model of pancreas cancer that demonstrates peripheral and central tolerance to human MUC1 and develops spontaneous tumors of the pancreas, we have previously reported the presence of functionally active, low affinity, MUC1-specific precursor cytotoxic T cells (pCTLs). Hypothesis for this study is that MUC1-based immunization may enhance the low level MUC1-specific immunity that may lead to an effective anti-tumor response. Data demonstrate that MUC1 peptide-based immunization elicits mature MUC1-specific CTLs in the peripheral lymphoid organs. The mature CTLs secrete IFN-gamma and are cytolytic against MUC1-expressing tumor cells in vitro. However, active CTLs that infiltrate the pancreas tumor microenvironment become cytolytically anergic and are tolerized to MUC1 antigen, allowing the tumor to grow. We demonstrate that the CTL tolerance could be reversed at least in vitro with the use of anti-CD40 co-stimulation. The pancreas tumor cells secrete immunosuppressive cytokines, including IL-10 and TGF-beta that are partly responsible for the down-regulation of CTL activity. In addition, they down-regulate their MHC class I molecules to avoid immune recognition. CD4+ CD25+ T regulatory cells, which secrete IL-10, were also found in the tumor environment. Together these data indicate the use of several immune evasion mechanisms by tumor cells to evade CTL killing. Thus altering the tumor microenvironment to make it more conducive to CTL killing may be key in developing a successful anti-cancer immunotherapy.

63 citations

Journal Article
TL;DR: The first evidence that demonstrates that the naturally occurring Muc1-specific CTLs isolated from one tumor model has antitumor effects on other MUC1-expressing tumors in vivo is demonstrated, which confirms that M UC1 is an important tumor rejection antigen and can serve as a target for immunotherapy.
Abstract: We have reported previously that MUC1 transgenic mice with spontaneous tumors of the pancreas (designated MET) naturally develop MHC class I-restricted, MUC1-specific CTLs as tumors progress (P Mukherjee et al, J Immunol, 165: 3451–3460, 2000) From these MET mice, we have isolated, expanded, and cloned naturally occurring MUC1-specific CTLs in vitro In this report, we show that the CTL line is predominantly CD8 + T cells and expresses T-cell receptor Vβ chains 51/52, 11, 13, and 2 and Vα chains 2, 83, 32, and 111/112 These CTLs recognize several epitopes on the MUC1 tandem repeat with highest affinity to APGSTAPPA The CTL clone, on the other hand, is 100% CD8 + cells and expresses a single Vβ chain of 51/52 and Vα2 It recognizes only the H-2D b class I-restricted epitope of MUC1, APGSTAPPA When adoptively transferred, the CTLs were effective in eradicating MUC1-expressing injected tumor cells including mammary gland cells (C57mg) and B16 melanomas These results suggest that MUC1-specific CTLs are capable of possibly preventing, or at least substantially delaying, MUC1-expressing tumor formation To our knowledge, this is the first evidence that demonstrates that the naturally occurring MUC1-specific CTLs isolated from one tumor model has antitumor effects on other MUC1-expressing tumors in vivo Therefore, our data confirm that MUC1 is an important tumor rejection antigen and can serve as a target for immunotherapy

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review focuses on the three best-characterized cell surface mucins expressed in the respiratory tract: MUC1, MUC4, and MUC16.
Abstract: Cell surface mucins are large transmembrane glycoproteins involved in diverse functions ranging from shielding the airway epithelium against pathogenic infection to regulating cellular signaling and transcription. Although hampered by the relatively recent characterization of cell surface mucins and the difficulties inherent in working with molecules of their size, numerous studies have placed the tethered mucins in the thick of normal and diseased lung physiology. This review focuses on the three best-characterized cell surface mucins expressed in the respiratory tract: MUC1, MUC4, and MUC16.

669 citations

Journal ArticleDOI
TL;DR: The common and the unique challenges to cancer vaccines and the progress that has been made in meeting them are addressed.
Abstract: Whether vaccines are designed to prepare the immune system for the encounter with a pathogen or with cancer, certain common challenges need to be faced, such as what antigen and what adjuvant to use, what type of immune response to generate and how to make it long lasting. Cancer, additionally, presents several unique hurdles. Cancer vaccines must overcome immune suppression exerted by the tumour, by previous therapy or by the effects of advanced age of the patient. If used for cancer prevention, vaccines must elicit effective long-term memory without the potential of causing autoimmunity. This article addresses the common and the unique challenges to cancer vaccines and the progress that has been made in meeting them. Considering how refractory cancer has been to standard therapy, efforts to achieve immune control of this disease are well justified.

615 citations

Journal ArticleDOI
Sandra J. Gendler1
TL;DR: Recent discoveries that suggest that MUC1 may be a multifunctional protein, located on the surfaces of cells as a sensor of the environment, poised to signal to the interior when things go awry are highlighted.
Abstract: MUC1 is a large, heavily glycosylated mucin expressed on the apical surfaces of most simple, secretory epithelia including the mammary gland, gastrointestinal, respiratory, urinary and reproductive tracts. Although MUC1 was thought to be an epithelial-specific protein, it is now known to be expressed on a variety of hematopoietic cells as well. Mucins function in protection and lubrication of epithelial surfaces. Transmembrane mucins, which contain cytoplasmic tail domains, appear to have additional functions through their abilities to interact with many proteins involved in signal transduction and cell adhesion. The goal of this review is to highlight recent discoveries that suggest that MUC1 may be a multifunctional protein, located on the surfaces of cells as a sensor of the environment, poised to signal to the interior when things go awry.

550 citations

Journal ArticleDOI
TL;DR: It is now clear that carcinoma-immune cell cross-talk initiated by TGF-beta signaling within the carcinoma cell is a significant determinant worth consideration when designing therapeutic strategies to manage tumor progression and metastasis.

315 citations

Journal ArticleDOI
TL;DR: The minimum requirements to consistently induce CTLs and ADCC-mediating antibodies specific for the tumor form of MUC1 are identified resulting in a therapeutic response in a mouse model of mammary cancer.
Abstract: The mucin MUC1 is typically aberrantly glycosylated by epithelial cancer cells manifested by truncated O-linked saccharides. The resultant glycopeptide epitopes can bind cell surface major histocompatibility complex (MHC) molecules and are susceptible to recognition by cytotoxic T lymphocytes (CTLs), whereas aberrantly glycosylated MUC1 protein on the tumor cell surface can be bound by antibodies to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). Efforts to elicit CTLs and IgG antibodies against cancer-expressed MUC1 have not been successful when nonglycosylated MUC1 sequences were used for vaccination, probably due to conformational dissimilarities. Immunizations with densely glycosylated MUC1 peptides have also been ineffective due to impaired susceptibility to antigen processing. Given the challenges to immuno-target tumor-associated MUC1, we have identified the minimum requirements to consistently induce CTLs and ADCC-mediating antibodies specific for the tumor form of MUC1 resulting in a therapeutic response in a mouse model of mammary cancer. The vaccine is composed of the immunoadjuvant Pam3CysSK4, a peptide Thelper epitope and an aberrantly glycosylated MUC1 peptide. Covalent linkage of the three components was essential for maximum efficacy. The vaccine produced CTLs, which recognized both glycosylated and nonglycosylated peptides, whereas a similar nonglycosylated vaccine gave CTLs which recognized only nonglycosylated peptide. Antibodies elicited by the glycosylated tripartite vaccine were significantly more lytic compared with the unglycosylated control. As a result, immunization with the glycosylated tripartite vaccine was superior in tumor prevention. Besides its own aptness as a clinical target, these studies of MUC1 are likely predictive of a covalent linking strategy applicable to many additional tumor-associated antigens.

270 citations