scispace - formally typeset
Search or ask a question
Author

Amen Shamim

Bio: Amen Shamim is an academic researcher from Sungkyunkwan University. The author has contributed to research in topics: DNA & Oligonucleotide. The author has an hindex of 2, co-authored 6 publications receiving 12 citations. Previous affiliations of Amen Shamim include University of Agriculture, Faisalabad.
Topics: DNA, Oligonucleotide, Base pair, A-DNA, Autophagy

Papers
More filters
Journal ArticleDOI
TL;DR: It is identified that coactivator-associated arginine methyltransferase 1 (CARM1) methylates Pontin chromatin-remodeling factor under glucose starvation, and methylated Pontin binds Forkhead Box O 3a (FOXO3a).
Abstract: Autophagy is a catabolic process through which cytoplasmic components are degraded and recycled in response to various stresses including starvation. Recently, transcriptional and epigenetic regulations of autophagy have emerged as essential mechanisms for maintaining homeostasis. Here, we identify that coactivator-associated arginine methyltransferase 1 (CARM1) methylates Pontin chromatin-remodeling factor under glucose starvation, and methylated Pontin binds Forkhead Box O 3a (FOXO3a). Genome-wide analyses and biochemical studies reveal that methylated Pontin functions as a platform for recruiting Tip60 histone acetyltransferase with increased H4 acetylation and subsequent activation of autophagy genes regulated by FOXO3a. Surprisingly, CARM1-Pontin-FOXO3a signaling axis can work in the distal regions and activate autophagy genes through enhancer activation. Together, our findings provide a signaling axis of CARM1-Pontin-FOXO3a and further expand the role of CARM1 in nuclear regulation of autophagy.

23 citations

Journal ArticleDOI
TL;DR: In this paper, the authors have found that adenine-cytosine repeats commonly present in the genome can form a stable non-canonical secondary structure with a non-Watson-Crick base pair and have regulatory roles in cells.
Abstract: I-motif or C4 is a four-stranded DNA structure with a protonated cytosine:cytosine base pair (C+:C) found in cytosine-rich sequences. We have found that oligodeoxynucleotides containing adenine and cytosine repeats form a stable secondary structure at a physiological pH with magnesium ion, which is similar to i-motif structure, and have named this structure 'adenine:cytosine-motif (AC-motif)'. AC-motif contains C+:C base pairs intercalated with putative A+:C base pairs between protonated adenine and cytosine. By investigation of the AC-motif present in the CDKL3 promoter (AC-motifCDKL3), one of AC-motifs found in the genome, we confirmed that AC-motifCDKL3 has a key role in regulating CDKL3 gene expression in response to magnesium. This is further supported by confirming that genome-edited mutant cell lines, lacking the AC-motif formation, lost this regulation effect. Our results verify that adenine-cytosine repeats commonly present in the genome can form a stable non-canonical secondary structure with a non-Watson-Crick base pair and have regulatory roles in cells, which expand non-canonical DNA repertoires.

9 citations

Journal ArticleDOI
TL;DR: In this paper, the genomes of one methicillin-resistant human isolate and one methicity-sensitive human isolate of Staphylococcus aureus sequence type 72 (ST72) from Korea were sequenced and analyzed using a subtractive genomics approach.
Abstract: Staphylococcus aureus sequence type 72 (ST72) is a major community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) that has rapidly entered the hospital setting in Korea, causing mild superficial skin wounds to severe bloodstream infections. In this study, we sequenced and analyzed the genomes of one methicillin-resistant human isolate and one methicillin-sensitive human isolate of ST72 from Korea, K07-204 and K07-561, respectively. We used a subtractive genomics approach to compare these two isolates to other 27 ST72 isolates to investigate antimicrobial resistance (AMR) and virulence potential. Furthermore, we validated genotypic differences by phenotypic characteristics analysis. Comparative and subtractive genomics analysis revealed that K07-204 contains methicillin (mecA), ampicillin (blaZ), erythromycin (ermC), aminoglycoside (aadD), and tetracycline (tet38, tetracycline efflux pump) resistance genes while K07-561 has ampicillin (blaZ) and tetracycline (tet38) resistance genes. In addition to antibiotics, K07-204 was reported to show resistance to lysostaphin treatment. K07-204 also has additional virulence genes (adsA, aur, hysA, icaABCDR, lip, lukD, sdrC, and sdrE) compared to K07-561, which may explain the differential virulence potential of these human isolates of ST72. Unexpectedly, the virulence potential of K07-561 was higher in an in vivo wax-worm infection model than that of K07-204, putatively due to the presence of a 20-fold higher staphyloxanthin concentration than K07-204. Comprehensive genomic analysis of these two human isolates, with 27 ST72 isolates, and S. aureus USA300 (ST8) suggested that acquisition of both virulence and antibiotics resistance genes by ST72 isolates might have facilitated their adaptation from a community to a hospital setting where the selective pressure imposed by antibiotics selects for more resistant and virulent isolates. Taken together, the results of the current study provide insight into the genotypic and phenotypic features of various ST72 clones across the globe, delivering more options for developing therapeutics and rapid molecular diagnostic tools to detect resistant bacteria.

5 citations

Journal ArticleDOI
TL;DR: This study reviews the currently available computational methods for predicting the non-canonical DNAs in the genome and reviews strategies for the identification of ncDNA motifs across the whole genome, necessary for further understanding and investigation of the structure and function of nCDNAs.
Abstract: Although most nucleotides in the genome form canonical double-stranded B-DNA, many repeated sequences transiently present as non-canonical conformations (non-B DNA) such as triplexes, quadruplexes, Z-DNA, cruciforms, and slipped/hairpins. Those noncanonical DNAs (ncDNAs) are not only associated with many genetic events such as replication, transcription, and recombination, but are also related to the genetic instability that results in the predisposition to disease. Due to the crucial roles of ncDNAs in cellular and genetic functions, various computational methods have been implemented to predict sequence motifs that generate ncDNA. Here, we review strategies for the identification of ncDNA motifs across the whole genome, which is necessary for further understanding and investigation of the structure and function of ncDNAs. There is a great demand for computational prediction of non-canonical DNAs that play key functional roles in gene expression and genome biology. In this study, we review the currently available computational methods for predicting the non-canonical DNAs in the genome. Current studies not only provide an insight into the computational methods for predicting the secondary structures of DNA but also increase our understanding of the roles of non-canonical DNA in the genome.

4 citations

Journal ArticleDOI
28 Nov 2020
TL;DR: In this paper, the packing interaction and other factors have a strong influence on the quality of DNA crystals and provide key information to predict crystal growth of candidate oligonucleotides.
Abstract: DNA crystallography provides essential structural information to understand the biochemical and biological functions of oligonucleotides. Therefore, it is necessary to understand the factors affecting crystallization of DNA to develop a strategy for production of diffraction-quality DNA crystals. We analyzed key factors affecting intermolecular interactions in 509 DNA crystals from the Nucleic Acid Database and Protein Databank. Packing interactions in DNA crystals were classified into four categories based on the intermolecular hydrogen bonds in base or backbone, and their correlations with other factors were analyzed. From this analysis, we confirmed that hydrogen bonding between terminal end and mid-region is most common in crystal packing and in high-resolution crystal structures. Interestingly, P212121 is highly preferred in DNA crystals in general, but the P61 space group is relatively abundant in A-DNA crystals. Accordingly, P212121 contains more terminal end-mid-region interactions than other space groups, confirming the significance of this interaction. While metals play a role in the production of a good crystal in B-DNA conformation, their effect is not significant in other conformations. From these analyses, we found that packing interaction and other factors have a strong influence on the quality of DNA crystals and provide key information to predict crystal growth of candidate oligonucleotides.

2 citations


Cited by
More filters
19 Apr 2011
TL;DR: Administration of spermidine markedly extended the lifespan of yeast, flies and worms, and human immune cells and inhibited oxidative stress in ageing mice, and found that enhanced autophagy is crucial for polyamine-induced suppression of necrosis and enhanced longevity.
Abstract: Ageing results from complex genetically and epigenetically programmed processes that are elicited in part by noxious or stressful events that cause programmed cell death Here, we report that administration of spermidine, a natural polyamine whose intracellular concentration declines during human ageing, markedly extended the lifespan of yeast, flies and worms, and human immune cells In addition, spermidine administration potently inhibited oxidative stress in ageing mice In ageing yeast, spermidine treatment triggered epigenetic deacetylation of histone H3 through inhibition of histone acetyltransferases (HAT), suppressing oxidative stress and necrosis Conversely, depletion of endogenous polyamines led to hyperacetylation, generation of reactive oxygen species, early necrotic death and decreased lifespan The altered acetylation status of the chromatin led to significant upregulation of various autophagy-related transcripts, triggering autophagy in yeast, flies, worms and human cells Finally, we found that enhanced autophagy is crucial for polyamine-induced suppression of necrosis and enhanced longevity

974 citations

Journal ArticleDOI
TL;DR: The current knowledge on acetylation of autophagy proteins and their regulations and functions in the Autophagy pathway is reviewed with focus on recent findings.
Abstract: ABSTRACT Post-translational modifications, such as phosphorylation, ubiquitination and acetylation, play crucial roles in the regulation of autophagy. Acetylation has emerged as an important regulatory mechanism for autophagy. Acetylation regulates autophagy initiation and autophagosome formation by targeting core components of the ULK1 complex, the BECN1-PIK3C3 complex, and the LC3 lipidation system. Recent studies have shown that acetylation occurs on the key proteins participating in autophagic cargo assembly and autophagosome-lysosome fusion, such as SQSTM1/p62 and STX17. In addition, acetylation controls autophagy at the transcriptional level by targeting histones and the transcription factor TFEB. Here, we review the current knowledge on acetylation of autophagy proteins and their regulations and functions in the autophagy pathway with focus on recent findings. Abbreviations : ACAT1: acetyl-CoA acetyltransferase 1; ACSS2: acyl-CoA synthetase short chain family member 2; AMPK: AMP-activated protein kinase; ATG: autophagy-related; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCAR2/DBC1: cell cycle and apoptosis regulator 2; BECN1: beclin 1; CMA: chaperone-mediated autophagy; CREBBP/CBP: CREB binding protein; EP300/p300: E1A binding protein p300; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GSK3: glycogen synthase kinase 3; HDAC6: histone deacetylase 6; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; KAT2A/GCN5: lysine acetyltransferase 2A; KAT2B/PCAF: lysine acetyltransferase 2B; KAT5/TIP60: lysine acetyltransferase 5; KAT8/MOF: lysine acetyltransferase 8; LAMP2A: lysosomal associated membrane protein 2A; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; PD: Parkinson disease; PE: phosphatidylethanolamine; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PKM2: pyruvate kinase M1/2; PtdIns3P: phosphatidylinositol-3-phosphate; PTM: post-translational modification; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RUBCN/Rubicon: rubicon autophagy regulator; RUBCNL/Pacer: rubicon like autophagy enhancer; SIRT1: sirtuin 1; SNAP29: synaptosome associated protein 29; SNARE: soluble N-ethylamide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TFEB: transcription factor EB; TP53/p53: tumor protein p53; TP53INP2/DOR: tumor protein p53 inducible nuclear protein 2; UBA: ubiquitin-associated; ULK1: unc-51 like autophagy activating kinase 1; VAMP8: vesicle associated membrane protein 8; WIPI2: WD repeat domain, phosphoinositide interacting 2.

33 citations

Journal ArticleDOI
TL;DR: Individual gene studies with high-throughput differential expression studies are compared to highlight the importance of formulating a combined approach that can be applied in humans, bacteria, and viruses to better understand the effect of G4-mediated gene regulation.
Abstract: G-quadruplexes (G4s) are among the best-characterized DNA secondary structures and are enriched in regulatory regions, especially promoters, of several prokaryote and eukaryote genomes, indicating a possible role in cis regulation of genes. Many studies have focused on evaluating the impact of specific G4-forming sequences in the promoter regions of genes. However, the lack of correlation between the presence of G4s and the functional impact on cis gene regulation, evidenced by the variable expression fold change in the presence of G4 stabilizers, shows that not all G4s affect transcription in the same manner. This indicates that the regulatory effect of the G4 is significantly influenced by its position, the surrounding DNA topology, and other environmental factors within the cell. In this review, we compare individual gene studies with high-throughput differential expression studies to highlight the importance of formulating a combined approach that can be applied in humans, bacteria, and viruses to better understand the effect of G4-mediated gene regulation.

17 citations

Journal ArticleDOI
TL;DR: The present review is a modest attempt to summarize the available literature, illustrating the occurrence of non-canonical structures at the molecular level in response to the environment and interaction with ligands and proteins.
Abstract: A complete understanding of DNA double-helical structure discovered by James Watson and Francis Crick in 1953, unveil the importance and significance of DNA. For the last seven decades, this has been a leading light in the course of the development of modern biology and biomedical science. Apart from the predominant B-form, experimental shreds of evidence have revealed the existence of a sequence-dependent structural diversity, unusual non-canonical structures like hairpin, cruciform, Z-DNA, multistranded structures such as DNA triplex, G-quadruplex, i-motif forms, etc. The diversity in the DNA structure depends on various factors such as base sequence, ions, superhelical stress, and ligands. In response to these various factors, the polymorphism of DNA regulates various genes via different processes like replication, transcription, translation, and recombination. However, altered levels of gene expression are associated with many human genetic diseases including neurological disorders and cancer. These non-B-DNA structures are expected to play a key role in determining genetic stability, DNA damage and repair etc. The present review is a modest attempt to summarize the available literature, illustrating the occurrence of non-canonical structures at the molecular level in response to the environment and interaction with ligands and proteins. This would provide an insight to understand the biological functions of these unusual DNA structures and their recognition as potential therapeutic targets for diverse genetic diseases.

11 citations