scispace - formally typeset
Search or ask a question
Author

Ami Patel

Bio: Ami Patel is an academic researcher. The author has contributed to research in topics: Self-healing hydrogels & Fire protection. The author has an hindex of 1, co-authored 1 publications receiving 160 citations.

Papers
More filters
Journal ArticleDOI
01 Oct 2000-Ecology
TL;DR: A 35-year controlled burning experiment in Minnesota oak savanna showed that fire frequency had a great impact on ecosystem carbon (C) stores, with most carbon stored in woody biomass.
Abstract: A 35-year controlled burning experiment in Minnesota oak savanna showed that fire frequency had a great impact on ecosystem carbon (C) stores. Specifically, compared to the historical fire regime, fire suppression led to an average of 1.8 Mg·ha−1·yr−1 of C storage, with most carbon stored in woody biomass. Forest floor carbon stores were also significantly impacted by fire frequency, but there were no detectable effects of fire suppression on carbon in soil and fine roots combined, or in woody debris. Total ecosystem C stores averaged ∼110 Mg/ha in stands experiencing presettlement fire frequencies, but ∼220 Mg/ha in stands experiencing fire suppression. If comparable rates of C storage were to occur in other ecosystems in response to the current extent of fire suppression in the United States, fire suppression in the USA might account for 8–20% of missing global carbon.

166 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The recent literature is reviewed, drawing parallels between fire and herbivores as alternative consumers of vegetation, and pointing to the common questions and some surprisingly different answers that emerge from viewing fire as a globally significant consumer that is analogous to herbivory.
Abstract: It is difficult to find references to fire in general textbooks on ecology, conservation biology or biogeography, in spite of the fact that large parts of the world burn on a regular basis, and that there is a considerable literature on the ecology of fire and its use for managing ecosystems. Fire has been burning ecosystems for hundreds of millions of years, helping to shape global biome distribution and to maintain the structure and function of fire-prone communities. Fire is also a significant evolutionary force, and is one of the first tools that humans used to re-shape their world. Here, we review the recent literature, drawing parallels between fire and herbivores as alternative consumers of vegetation. We point to the common questions, and some surprisingly different answers, that emerge from viewing fire as a globally significant consumer that is analogous to herbivory.

1,942 citations

Journal ArticleDOI
TL;DR: Comparison of global 'fire off' simulations with landcover and treecover maps show that vast areas of humid C(4) grasslands and savannas, especially in South America and Africa, have the climate potential to form forests.
Abstract: This paper is the first global study of the extent to which fire determines global vegetation patterns by preventing ecosystems from achieving the potential height, biomass and dominant functional types expected under the ambient climate (climate potential). To determine climate potential, we simulated vegetation without fire using a dynamic global-vegetation model. Model results were tested against fire exclusion studies from different parts of the world. Simulated dominant growth forms and tree cover were compared with satellite-derived land- and tree-cover maps. Simulations were generally consistent with results of fire exclusion studies in southern Africa and elsewhere. Comparison of global 'fire off' simulations with landcover and treecover maps show that vast areas of humid C(4) grasslands and savannas, especially in South America and Africa, have the climate potential to form forests. These are the most frequently burnt ecosystems in the world. Without fire, closed forests would double from 27% to 56% of vegetated grid cells, mostly at the expense of C(4) plants but also of C(3) shrubs and grasses in cooler climates. C(4) grasses began spreading 6-8 Ma, long before human influence on fire regimes. Our results suggest that fire was a major factor in their spread into forested regions, splitting biotas into fire tolerant and intolerant taxa.

1,664 citations

Journal ArticleDOI
TL;DR: In this article, the importance of land-use history and its legacies in most ecological systems has been recognized as a legitimate and essential subject of environmental science, and recognition of these historical legacies adds explanatory power to our understanding of modern conditions at scales from organisms to the globe and reduces missteps in anticipating or managing for future conditions.
Abstract: Recognition of the importance of land-use history and its legacies in most ecological systems has been a major factor driving the recent focus on human activity as a legitimate and essential subject of environmental science. Ecologists, conservationists, and natural resource policymakers now recognize that the legacies of land-use activities continue to influence ecosystem structure and function for decades or centuries—or even longer—after those activities have ceased. Consequently, recognition of these historical legacies adds explanatory power to our understanding of modern conditions at scales from organisms to the globe and reduces missteps in anticipating or managing for future conditions. As a result, environmental history emerges as an integral part of ecological science and conservation planning. By considering diverse ecological phenomena, ranging from biodiversity and biogeochemical cycles to ecosystem resilience to anthropogenic stress, and by examining terrestrial and aquatic ecosyst...

1,069 citations

Journal ArticleDOI
08 Aug 2002-Nature
TL;DR: A clear negative relationship between precipitation and changes in soil organic carbon and nitrogen content when grasslands were invaded by woody vegetation is found, with drier sites gaining, and wetter sites losing, soilorganic carbon.
Abstract: The invasion of woody vegetation into deserts, grasslands and savannas is generally thought to lead to an increase in the amount of carbon stored in those ecosystems. For this reason, shrub and forest expansion (for example, into grasslands) is also suggested to be a substantial, if uncertain, component of the terrestrial carbon sink1,2,3,4,5,6,7,8,9,10,11,12,13,14. Here we investigate woody plant invasion along a precipitation gradient (200 to 1,100 mm yr-1) by comparing carbon and nitrogen budgets and soil δ13C profiles between six pairs of adjacent grasslands, in which one of each pair was invaded by woody species 30 to 100 years ago. We found a clear negative relationship between precipitation and changes in soil organic carbon and nitrogen content when grasslands were invaded by woody vegetation, with drier sites gaining, and wetter sites losing, soil organic carbon. Losses of soil organic carbon at the wetter sites were substantial enough to offset increases in plant biomass carbon, suggesting that current land-based assessments may overestimate carbon sinks. Assessments relying on carbon stored from woody plant invasions to balance emissions may therefore be incorrect.

952 citations

Journal ArticleDOI
TL;DR: In insect communities, insect species richness increased as plant species richness and plant functional group richness increased, and both factors may explain how the loss of plant diversity influences higher trophic levels.
Abstract: We experimentally separated the effects of two components of plant diversity—plant species richness and plant functional group richness—on insect communities. Plant species richness and plant functional group richness had contrasting effects on insect abundances, a result we attributed to three factors. First, lower insect abundances at higher plant functional group richness were explained by a sampling effect, which was caused by the increasing likelihood that one low‐quality group, C4 grasses, would be present and reduce average insect abundances by 25%. Second, plant biomass, which was positively related to plant functional group richness, had a strong, positive effect on insect abundances. Third, a positive effect of plant species richness on insect abundances may have been caused by greater availability of alternate plant resources or greater vegetational structure. In addition, a greater diversity of insect species, whose individual abundances were often unaffected by changes in plant spec...

479 citations