scispace - formally typeset
Search or ask a question
Author

Amin Vahdat

Bio: Amin Vahdat is an academic researcher from Google. The author has contributed to research in topics: Network topology & The Internet. The author has an hindex of 88, co-authored 352 publications receiving 38634 citations. Previous affiliations of Amin Vahdat include University of California & University of California, Berkeley.


Papers
More filters
Amin Vahdat1
01 Jan 2000
TL;DR: This work introduces Epidemic Routing, where random pair-wise exchanges of messages among mobile hosts ensure eventual message delivery and achieves eventual delivery of 100% of messages with reasonable aggregate resource consumption in a number of interesting scenarios.
Abstract: Mobile ad hoc routing protocols allow nodes with wireless adaptors to communicate with one another without any pre-existing network infrastructure. Existing ad hoc routing protocols, while robust to rapidly changing network topology, assume the presence of a connected path from source to destination. Given power limitations, the advent of short-range wireless networks, and the wide physical conditions over which ad hoc networks must be deployed, in some scenarios it is likely that this assumption is invalid. In this work, we develop techniques to deliver messages in the case where there is never a connected path from source to destination or when a network partition exists at the time a message is originated. To this end, we introduce Epidemic Routing, where random pair-wise exchanges of messages among mobile hosts ensure eventual message delivery. The goals of Epidemic Routing are to: i) maximize message delivery rate, ii) minimize message latency, and iii) minimize the total resources consumed in message delivery. Through an implementation in the Monarch simulator, we show that Epidemic Routing achieves eventual delivery of 100% of messages with reasonable aggregate resource consumption in a number of interesting scenarios.

4,355 citations

Journal ArticleDOI
17 Aug 2008
TL;DR: This paper shows how to leverage largely commodity Ethernet switches to support the full aggregate bandwidth of clusters consisting of tens of thousands of elements and argues that appropriately architected and interconnected commodity switches may deliver more performance at less cost than available from today's higher-end solutions.
Abstract: Today's data centers may contain tens of thousands of computers with significant aggregate bandwidth requirements. The network architecture typically consists of a tree of routing and switching elements with progressively more specialized and expensive equipment moving up the network hierarchy. Unfortunately, even when deploying the highest-end IP switches/routers, resulting topologies may only support 50% of the aggregate bandwidth available at the edge of the network, while still incurring tremendous cost. Non-uniform bandwidth among data center nodes complicates application design and limits overall system performance.In this paper, we show how to leverage largely commodity Ethernet switches to support the full aggregate bandwidth of clusters consisting of tens of thousands of elements. Similar to how clusters of commodity computers have largely replaced more specialized SMPs and MPPs, we argue that appropriately architected and interconnected commodity switches may deliver more performance at less cost than available from today's higher-end solutions. Our approach requires no modifications to the end host network interface, operating system, or applications; critically, it is fully backward compatible with Ethernet, IP, and TCP.

3,549 citations

Proceedings ArticleDOI
27 Aug 2013
TL;DR: This work presents the design, implementation, and evaluation of B4, a private WAN connecting Google's data centers across the planet, using OpenFlow to control relatively simple switches built from merchant silicon.
Abstract: We present the design, implementation, and evaluation of B4, a private WAN connecting Google's data centers across the planet. B4 has a number of unique characteristics: i) massive bandwidth requirements deployed to a modest number of sites, ii) elastic traffic demand that seeks to maximize average bandwidth, and iii) full control over the edge servers and network, which enables rate limiting and demand measurement at the edge.These characteristics led to a Software Defined Networking architecture using OpenFlow to control relatively simple switches built from merchant silicon. B4's centralized traffic engineering service drives links to near 100% utilization, while splitting application flows among multiple paths to balance capacity against application priority/demands. We describe experience with three years of B4 production deployment, lessons learned, and areas for future work.

2,226 citations

Journal ArticleDOI
28 Jul 2014
TL;DR: This paper proposes P4 as a strawman proposal for how OpenFlow should evolve in the future, and describes how to use P4 to configure a switch to add a new hierarchical label.
Abstract: P4 is a high-level language for programming protocol-independent packet processors. P4 works in conjunction with SDN control protocols like OpenFlow. In its current form, OpenFlow explicitly specifies protocol headers on which it operates. This set has grown from 12 to 41 fields in a few years, increasing the complexity of the specification while still not providing the flexibility to add new headers. In this paper we propose P4 as a strawman proposal for how OpenFlow should evolve in the future. We have three goals: (1) Reconfigurability in the field: Programmers should be able to change the way switches process packets once they are deployed. (2) Protocol independence: Switches should not be tied to any specific network protocols. (3) Target independence: Programmers should be able to describe packet-processing functionality independently of the specifics of the underlying hardware. As an example, we describe how to use P4 to configure a switch to add a new hierarchical label.

2,214 citations

Proceedings ArticleDOI
28 Apr 2010
TL;DR: Hedera is presented, a scalable, dynamic flow scheduling system that adaptively schedules a multi-stage switching fabric to efficiently utilize aggregate network resources and delivers bisection bandwidth that is 96% of optimal and up to 113% better than static load-balancing methods.
Abstract: Today's data centers offer tremendous aggregate bandwidth to clusters of tens of thousands of machines. However, because of limited port densities in even the highest-end switches, data center topologies typically consist of multi-rooted trees with many equal-cost paths between any given pair of hosts. Existing IP multipathing protocols usually rely on per-flow static hashing and can cause substantial bandwidth losses due to long-term collisions.In this paper, we present Hedera, a scalable, dynamic flow scheduling system that adaptively schedules a multi-stage switching fabric to efficiently utilize aggregate network resources. We describe our implementation using commodity switches and unmodified hosts, and show that for a simulated 8,192 host data center, Hedera delivers bisection bandwidth that is 96% of optimal and up to 113% better than static load-balancing methods.

1,602 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
01 Aug 2001
TL;DR: The authors present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing.
Abstract: "Grid" computing has emerged as an important new field, distinguished from conventional distributed computing by its focus on large-scale resource sharing, innovative applications, and, in some cases, high performance orientation. In this article, the authors define this new field. First, they review the "Grid problem," which is defined as flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources--what is referred to as virtual organizations. In such settings, unique authentication, authorization, resource access, resource discovery, and other challenges are encountered. It is this class of problem that is addressed by Grid technologies. Next, the authors present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing. The authors describe requirements that they believe any such mechanisms must satisfy and discuss the importance of defining a compact set of intergrid protocols to enable interoperability among different Grid systems. Finally, the authors discuss how Grid technologies relate to other contemporary technologies, including enterprise integration, application service provider, storage service provider, and peer-to-peer computing. They maintain that Grid concepts and technologies complement and have much to contribute to these other approaches.

6,716 citations

Journal ArticleDOI
TL;DR: This paper defines Cloud computing and provides the architecture for creating Clouds with market-oriented resource allocation by leveraging technologies such as Virtual Machines (VMs), and provides insights on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain Service Level Agreement (SLA) oriented resource allocation.

5,850 citations