scispace - formally typeset
Search or ask a question
Author

Amir Amedi

Bio: Amir Amedi is an academic researcher from Interdisciplinary Center Herzliya. The author has contributed to research in topics: Sensory substitution & Visual cortex. The author has an hindex of 44, co-authored 126 publications receiving 8999 citations. Previous affiliations of Amir Amedi include Interdisciplinary Center for Neural Computation & Hebrew University of Jerusalem.


Papers
More filters
Journal ArticleDOI
TL;DR: The challenge the authors face is to learn enough about the mechanisms of plasticity to modulate them to achieve the best behavioral outcome for a given subject.
Abstract: Plasticity is an intrinsic property of the human brain and represents evolution’s invention to enable the nervous system to escape the restrictions of its own genome and thus adapt to environmental pressures, physiologic changes, and experiences. Dynamic shifts in the strength of preexisting connections across distributed neural networks, changes in task-related cortico-cortical and corticosubcortical coherence and modifications of the mapping between behavior and neural activity take place in response to changes in afferent input or efferent demand. Such rapid, ongoing changes may be followed by the establishment of new connections through dendritic growth and arborization. However, they harbor the danger that the evolving pattern of neural activation may in itself lead to abnormal behavior. Plasticity is the mechanism for development and learning, as much as a cause of pathology. The challenge we face is to learn enough about the mechanisms of plasticity to modulate them to achieve the best behavioral outcome for a given subject.

1,556 citations

Journal ArticleDOI
TL;DR: The data directly link momentary levels of posterior alpha-band activity to distinct states of visual cortex excitability, and suggest that their spontaneous fluctuation constitutes a visual operation mode that is activated automatically even without retinal input.
Abstract: Neural activity fluctuates dynamically with time, and these changes have been reported to be of behavioral significance, despite occurring spontaneously. Through electroencephalography (EEG), fluctuations in alpha-band (8-14 Hz) activity have been identified over posterior sites that covary on a trial-by-trial basis with whether an upcoming visual stimulus will be detected or not. These fluctuations are thought to index the momentary state of visual cortex excitability. Here, we tested this hypothesis by directly exciting human visual cortex via transcranial magnetic stimulation (TMS) to induce illusory visual percepts (phosphenes) in blindfolded participants, while simultaneously recording EEG. We found that identical TMS-stimuli evoked a percept (P-yes) or not (P-no) depending on prestimulus alpha-activity. Low prestimulus alpha-band power resulted in TMS reliably inducing phosphenes (P-yes trials), whereas high prestimulus alpha-values led the same TMS-stimuli failing to evoke a visual percept (P-no trials). Additional analyses indicated that the perceptually relevant fluctuations in alpha-activity/visual cortex excitability were spatially specific and occurred on a subsecond time scale in a recurrent pattern. Our data directly link momentary levels of posterior alpha-band activity to distinct states of visual cortex excitability, and suggest that their spontaneous fluctuation constitutes a visual operation mode that is activated automatically even without retinal input.

664 citations

Journal ArticleDOI
TL;DR: Using fMRI to map object-related brain regions, it is suggested that neuronal populations in the occipito–temporal cortex may constitute a multimodal object- related network.
Abstract: The ventral pathway is involved in primate visual object recognition. In humans, a central stage in this pathway is an occipito‐temporal region termed the lateral occipital complex (LOC), which is preferentially activated by visual objects compared to scrambled images or textures. However, objects have characteristic attributes (such as three-dimensional shape) that can be perceived both visually and haptically. Therefore, object-related brain areas may hold a representation of objects in both modalities. Using fMRI to map object-related brain regions, we found robust and consistent somatosensory activation in the occipito‐temporal cortex. This region showed clear preference for objects compared to textures in both modalities. Most somatosensory object-selective voxels overlapped a part of the visual object-related region LOC. Thus, we suggest that neuronal populations in the occipito‐temporal cortex may constitute a multimodal object-related network.

623 citations

Journal ArticleDOI
TL;DR: Using functional magnetic resonance imaging (fMRI) in ten congenitally blind human participants, robust occipital activation during a verbal-memory task (in the absence of any sensory input), as well as during verb generation and Braille reading is found.
Abstract: The visual cortex may be more modifiable than previously considered. Using functional magnetic resonance imaging (fMRI) in ten congenitally blind human participants, we found robust occipital activation during a verbal-memory task (in the absence of any sensory input), as well as during verb generation and Braille reading. We also found evidence for reorganization and specialization of the occipital cortex, along the anterior-posterior axis. Whereas anterior regions showed preference for Braille, posterior regions (including V1) showed preference for verbal-memory and verb generation (which both require memory of verbal material). No such occipital activation was found in sighted subjects. This difference between the groups was mirrored by superior performance of the blind in various verbal-memory tasks. Moreover, the magnitude of V1 activation during the verbal-memory condition was highly correlated with the blind individual's abilities in a variety of verbal-memory tests, suggesting that the additional occipital activation may have a functional role.

559 citations

Journal ArticleDOI
TL;DR: It is suggested that LOtv, the cortical region LOtv for the lateral occipital tactile-visual region, is involved in recovering the geometrical shape of objects.
Abstract: We have recently demonstrated using fMRI that a region within the human lateral occipital complex (LOC) is activated by objects when either seen or touched. We term this cortical region LOtv for the lateral occipital tactile-visual region. We report here that LOtv voxels tend to be located in sub-regions of LOC that show preference for graspable visual objects over faces or houses. We further examine the nature of object representation in LOtv by studying its response to stimuli in three modalities: auditory, somatosensory and visual. If objects activate LOtv, irrespective of the modality used, the activation is likely to reflect a highly abstract representation. In contrast, activation specific to vision and touch may reflect common and exclusive attributes shared by these senses. We show here that while object activation is robust in both the visual and the somatosensory modalities, auditory signals do not evoke substantial responses in this region. The lack of auditory activation in LOtv cannot be explained by differences in task performance or by an ineffective auditory stimulation. Unlike vision and touch, auditory information contributes little to the recovery of the precise shape of objects. We therefore suggest that LOtv is involved in recovering the geometrical shape of objects.

417 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The present updated guidelines review issues of risk and safety of conventional TMS protocols, address the undesired effects and risks of emerging TMS interventions, the applications of TMS in patients with implanted electrodes in the central nervous system, and safety aspects of T MS in neuroimaging environments.

4,447 citations

Journal ArticleDOI
TL;DR: This target article critically examines this "hierarchical prediction machine" approach, concluding that it offers the best clue yet to the shape of a unified science of mind and action.
Abstract: Brains, it has recently been argued, are essentially prediction machines. They are bundles of cells that support perception and action by constantly attempting to match incoming sensory inputs with top-down expectations or predictions. This is achieved using a hierarchical generative model that aims to minimize prediction error within a bidirectional cascade of cortical processing. Such accounts offer a unifying model of perception and action, illuminate the functional role of attention, and may neatly capture the special contribution of cortical processing to adaptive success. This target article critically examines this "hierarchical prediction machine" approach, concluding that it offers the best clue yet to the shape of a unified science of mind and action. Sections 1 and 2 lay out the key elements and implications of the approach. Section 3 explores a variety of pitfalls and challenges, spanning the evidential, the methodological, and the more properly conceptual. The paper ends (sections 4 and 5) by asking how such approaches might impact our more general vision of mind, experience, and agency.

3,640 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
TL;DR: The brain's default mode network plays a central role in this work and consistently decreases its activity when compared with activity during these relaxed nontask states.
Abstract: The brain's default mode network consists of discrete, bilateral and symmetrical cortical areas, in the medial and lateral parietal, medial prefrontal, and medial and lateral temporal cortices of the human, nonhuman primate, cat, and rodent brains. Its discovery was an unexpected consequence of brain-imaging studies first performed with positron emission tomography in which various novel, attention-demanding, and non-self-referential tasks were compared with quiet repose either with eyes closed or with simple visual fixation. The default mode network consistently decreases its activity when compared with activity during these relaxed nontask states. The discovery of the default mode network reignited a longstanding interest in the significance of the brain's ongoing or intrinsic activity. Presently, studies of the brain's intrinsic activity, popularly referred to as resting-state studies, have come to play a major role in studies of the human brain in health and disease. The brain's default mode network plays a central role in this work.

2,506 citations