scispace - formally typeset
Search or ask a question
Author

Amir H. Alavi

Bio: Amir H. Alavi is an academic researcher from University of Pittsburgh. The author has contributed to research in topics: Genetic programming & Linear genetic programming. The author has an hindex of 49, co-authored 202 publications receiving 11559 citations. Previous affiliations of Amir H. Alavi include Harvard University & Shahid Beheshti University.


Papers
More filters
Journal ArticleDOI
TL;DR: The performance of the CS algorithm is further compared with various algorithms representative of the state of the art in the area and the optimal solutions obtained are mostly far better than the best solutions obtained by the existing methods.
Abstract: In this study, a new metaheuristic optimization algorithm, called cuckoo search (CS), is introduced for solving structural optimization tasks. The new CS algorithm in combination with Levy flights is first verified using a benchmark nonlinear constrained optimization problem. For the validation against structural engineering optimization problems, CS is subsequently applied to 13 design problems reported in the specialized literature. The performance of the CS algorithm is further compared with various algorithms representative of the state of the art in the area. The optimal solutions obtained by CS are mostly far better than the best solutions obtained by the existing methods. The unique search features used in CS and the implications for future research are finally discussed in detail.

1,701 citations

Journal ArticleDOI
TL;DR: The proposed KH algorithm, based on the simulation of the herding behavior of krill individuals, is capable of efficiently solving a wide range of benchmark optimization problems and outperforms the exciting algorithms.

1,556 citations

Journal ArticleDOI
TL;DR: A recently developed metaheuristic optimization algorithm, the Firefly Algorithm, which mimics the social behavior of fireflies based on their flashing characteristics is used for solving mixed continuous/discrete structural optimization problems.

720 citations

Journal ArticleDOI
TL;DR: This study introduces chaos into FA so as to increase its global search mobility for robust global optimization and shows that some chaotic FAs can clearly outperform the standard FA.

703 citations

Journal ArticleDOI
TL;DR: The role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted and unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm.
Abstract: Learning incorporates a broad range of complex procedures. Machine learning (ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.

701 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: The results of the classical engineering design problems and real application prove that the proposed GWO algorithm is applicable to challenging problems with unknown search spaces.

10,082 citations

Journal ArticleDOI
TL;DR: Optimization results prove that the WOA algorithm is very competitive compared to the state-of-art meta-heuristic algorithms as well as conventional methods.

7,090 citations

Journal ArticleDOI
TL;DR: The SCA algorithm obtains a smooth shape for the airfoil with a very low drag, which demonstrates that this algorithm can highly be effective in solving real problems with constrained and unknown search spaces.
Abstract: This paper proposes a novel population-based optimization algorithm called Sine Cosine Algorithm (SCA) for solving optimization problems. The SCA creates multiple initial random candidate solutions and requires them to fluctuate outwards or towards the best solution using a mathematical model based on sine and cosine functions. Several random and adaptive variables also are integrated to this algorithm to emphasize exploration and exploitation of the search space in different milestones of optimization. The performance of SCA is benchmarked in three test phases. Firstly, a set of well-known test cases including unimodal, multi-modal, and composite functions are employed to test exploration, exploitation, local optima avoidance, and convergence of SCA. Secondly, several performance metrics (search history, trajectory, average fitness of solutions, and the best solution during optimization) are used to qualitatively observe and confirm the performance of SCA on shifted two-dimensional test functions. Finally, the cross-section of an aircraft's wing is optimized by SCA as a real challenging case study to verify and demonstrate the performance of this algorithm in practice. The results of test functions and performance metrics prove that the algorithm proposed is able to explore different regions of a search space, avoid local optima, converge towards the global optimum, and exploit promising regions of a search space during optimization effectively. The SCA algorithm obtains a smooth shape for the airfoil with a very low drag, which demonstrates that this algorithm can highly be effective in solving real problems with constrained and unknown search spaces. Note that the source codes of the SCA algorithm are publicly available at http://www.alimirjalili.com/SCA.html .

3,088 citations

Journal ArticleDOI
TL;DR: The qualitative and quantitative results prove the efficiency of SSA and MSSA and demonstrate the merits of the algorithms proposed in solving real-world problems with difficult and unknown search spaces.

3,027 citations