scispace - formally typeset
Search or ask a question
Author

Amirhossein Zabolian

Bio: Amirhossein Zabolian is an academic researcher from Islamic Azad University. The author has contributed to research in topics: Cancer & microRNA. The author has an hindex of 13, co-authored 45 publications receiving 361 citations.
Topics: Cancer, microRNA, Cancer cell, Metastasis, Medicine

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the potential of chitosan-based nanoparticles for the delivery of siRNA in cancer therapy is discussed; proliferation, metastasis and chemoresistance are suppressed by siRNA-loaded CS nanoparticles.

89 citations

Journal ArticleDOI
TL;DR: The role of exosomes in cancer progression and therapy is discussed in this article , where the authors provide a comprehensive understanding of the role of the exosome in cancer therapy, focusing on their therapeutic value in cancer progress and remodeling of the tumor microenvironment.
Abstract: Cancer is one of the leading causes of death worldwide, and the factors responsible for its progression need to be elucidated. Exosomes are structures with an average size of 100 nm that can transport proteins, lipids, and nucleic acids. This review focuses on the role of exosomes in cancer progression and therapy. We discuss how exosomes are able to modulate components of the tumor microenvironment and influence proliferation and migration rates of cancer cells. We also highlight that, depending on their cargo, exosomes can suppress or promote tumor cell progression and can enhance or reduce cancer cell response to radio- and chemo-therapies. In addition, we describe how exosomes can trigger chronic inflammation and lead to immune evasion and tumor progression by focusing on their ability to transfer non-coding RNAs between cells and modulate other molecular signaling pathways such as PTEN and PI3K/Akt in cancer. Subsequently, we discuss the use of exosomes as carriers of anti-tumor agents and genetic tools to control cancer progression. We then discuss the role of tumor-derived exosomes in carcinogenesis. Finally, we devote a section to the study of exosomes as diagnostic and prognostic tools in clinical courses that is important for the treatment of cancer patients. This review provides a comprehensive understanding of the role of exosomes in cancer therapy, focusing on their therapeutic value in cancer progression and remodeling of the tumor microenvironment.

88 citations


Cited by
More filters
Journal Article
11 Jun 2020-Elements
TL;DR: The design principles of AIE PSs and their biomedical applications are discussed in detail, starting with a summary of traditional PSs, followed by a comparison between traditional and AIEPSs to highlight the various design strategies and unique features of the latter.
Abstract: Photodynamic therapy is arising as a noninvasive treatment modality for cancer and other diseases. One of the key factors to determine the therapeutic function is the efficiency of photosensitizers (PSs). Opposed to traditional PSs, which show quenched fluorescence and reduced singlet oxygen production in the aggregate state, PSs with aggregation-induced emission (AIE) exhibit enhanced fluorescence and strong photosensitization ability in nanoparticles. Here, the design principles of AIE PSs and their biomedical applications are discussed in detail, starting with a summary of traditional PSs, followed by a comparison between traditional and AIE PSs to highlight the various design strategies and unique features of the latter. Subsequently, the applications of AIE PSs in photodynamic cancer cell ablation, bacteria killing, and image-guided therapy are discussed using charged AIE PSs, AIE PS molecular probes, and AIE PS nanoparticles as examples. These studies have demonstrated the great potential of AIE PSs as effective theranostic agents to treat tumor or bacterial infection. This review hopefully will spur more research interest in AIE PSs for future translational research.

345 citations

15 Jan 2012
TL;DR: There are currently no drugs which effectively reduce the progression of inflammation in smokers with COPD but several HDAC2 enhancers including low dose theophylline and other potential anti-inflammatory therapies including PDE4 inhibitors and p38 MAPK inhibitors are being evaluated.
Abstract: Asthma and COPD are two chronic inflammatory disorders of the airway characterized by airflow limitation. While many similarities exist between these two diseases, they are pathologically distinct due to the involvement of different inflammatory cells; predominantly neutrophils, CD8 lymphocytes in COPD and eosinophils and CD4 lymphocytes in asthma. Cigarette smoking is associated with accelerated decline of lung function, increased mortality, and worsening of symptoms in both asthma and COPD. Furthermore, exposure to cigarette smoke can alter the inflammatory mechanisms in asthma to become similar to that seen in COPD with increasing CD8 cells and neutrophils and may therefore alter the response to therapy. Cigarette smoke exposure has been associated with a poor response to inhaled corticosteroids which are recommended as first line anti-inflammatory medications in asthma and as an add-on therapy in patients with severe COPD with history of exacerbations. While the main proposed mechanism for this altered response is the reduction of the histone deacetylase 2 (HDAC2) enzyme system, other possible mechanisms include the overexpression of GR-β, activation of p38 MAPK pathway and increased production of inflammatory cytokines such as IL-2, 4, 8, TNF-α and NF-Kß. Few clinical trials suggest that leukotriene modifiers may be an alternative to corticosteroids in smokers with asthma but there are currently no drugs which effectively reduce the progression of inflammation in smokers with COPD. However, several HDAC2 enhancers including low dose theophylline and other potential anti-inflammatory therapies including PDE4 inhibitors and p38 MAPK inhibitors are being evaluated.

140 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the generation and sources of reactive oxygen species within tumor cells, ROS-associated signaling pathways, their regulation by antioxidant defense systems, as well as the effect of elevated ROS production in tumor progression.
Abstract: Reactive oxygen species (ROS) are important in regulating normal cellular processes whereas deregulated ROS leads to the development of a diseased state in humans including cancers. Several studies have been found to be marked with increased ROS production which activates pro-tumorigenic signaling, enhances cell survival and proliferation and drives DNA damage and genetic instability. However, higher ROS levels have been found to promote anti-tumorigenic signaling by initiating oxidative stress-induced tumor cell death. Tumor cells develop a mechanism where they adjust to the high ROS by expressing elevated levels of antioxidant proteins to detoxify them while maintaining pro-tumorigenic signaling and resistance to apoptosis. Therefore, ROS manipulation can be a potential target for cancer therapies as cancer cells present an altered redox balance in comparison to their normal counterparts. In this review, we aim to provide an overview of the generation and sources of ROS within tumor cells, ROS-associated signaling pathways, their regulation by antioxidant defense systems, as well as the effect of elevated ROS production in tumor progression. It will provide an insight into how pro- and anti-tumorigenic ROS signaling pathways could be manipulated during the treatment of cancer.

140 citations

Journal ArticleDOI
TL;DR: New findings on the potential mechanism(s) underlying the effect of hypoxia and HIF‐1 signaling on tumor immune evasion in the hypoxic tumor microenvironment will contribute to the understanding of Hif‐1‐mediated tumor immune evade, leading to the development of effective HIF•1‐targeting drugs and immunotherapies.
Abstract: Hypoxia-inducible factor 1 (HIF-1) plays an indispensable role in the hypoxic tumor microenvironment. Hypoxia and HIF-1 are involved in multiple aspects of tumor progression, such as metastasis, angiogenesis, and immune evasion. In innate and adaptive immune systems, malignant tumor cells avoid their recognition and destruction by HIF-1. Tumor immune evasion allows cancer cells to proliferate and metastasize and is associated with immunotherapy failure and chemoresistance. In the hypoxic tumor microenvironment, HIF-1 signaling suppresses the innate and adaptive immune systems to evade immune attack by inducing the expression of immunosuppressive factors and immune checkpoint molecules, including vascular endothelial growth factor, prostaglandin E2 , and programmed death-ligand 1/programmed death-1. Moreover, HIF-1 blocks tumor-associated antigen presentation via major histocompatibility complex class I chain-related/natural killer group 2, member D signaling. Tumor-associated autophagy and the release of tumor-derived exosomes contribute to HIF-1-mediated immune evasion. This review focuses on recent findings on the potential mechanism(s) underlying the effect of hypoxia and HIF-1 signaling on tumor immune evasion in the hypoxic tumor microenvironment. The effects of HIF-1 on immune checkpoint molecules, immunosuppressive molecules, autophagy, and exosomes have been described. Additionally, the potential role of HIF-1 in the regulation of tumor-derived exosomes, as well as the roles of HIF-1 and exosomes in tumor evasion, are discussed. This study will contribute to our understanding of HIF-1-mediated tumor immune evasion, leading to the development of effective HIF-1-targeting drugs and immunotherapies.

124 citations