scispace - formally typeset
Search or ask a question
Author

Amit Ghosh

Bio: Amit Ghosh is an academic researcher from Birbal Sahni Institute of Palaeobotany. The author has contributed to research in topics: Vibrio cholerae & El Tor. The author has an hindex of 28, co-authored 122 publications receiving 2382 citations. Previous affiliations of Amit Ghosh include Jadavpur University & Council of Scientific and Industrial Research.


Papers
More filters
Journal ArticleDOI
TL;DR: Various aspects of VBNC bacteria are described, which include their proteomic and genetic profiles under the VB NC state, conditions of resuscitation, methods of detection, antibiotic resistance, and observations on Rpf.
Abstract: Under stress conditions, many species of bacteria enter into starvation mode of metabolism or a physiologically viable but non-culturable (VBNC) state. Several human pathogenic bacteria have been reported to enter into the VBNC state under these conditions. The pathogenic VBNC bacteria cannot be grown using conventional culture media, although they continue to retain their viability and express their virulence. Though there have been debates on the VBNC concept in the past, several molecular studies have shown that not only can the VBNC state be induced under in vitro conditions but also that resuscitation from this state is possible under appropriate conditions. The most notable advance in resuscitating VBNC bacteria is the discovery of resuscitation-promoting factor (Rpf), which is a bacterial cytokines found in both Gram-positive and Gram-negative organisms. VBNC state is a survival strategy adopted by the bacteria, which has important implication in several fields, including environmental monitoring, food technology, and infectious disease management; and hence it is important to investigate the association of bacterial pathogens under VBNC state and the water/foodborne outbreaks. In this review, we describe various aspects of VBNC bacteria, which include their proteomic and genetic profiles under the VBNC state, conditions of resuscitation, methods of detection, antibiotic resistance, and observations on Rpf.

338 citations

Journal ArticleDOI
TL;DR: The results indicated that besides class I integrons and plasmids, a conjugative transposon element, SXT, possibly contributed to the multiple antibiotic resistance in Vibrio cholerae.
Abstract: Molecular mechanisms of multidrug resistance in Vibrio cholerae belonging to non-O1, non-O139 serogroups isolated during 1997 to 1998 in Calcutta, India, were investigated. Out of the 94 strains examined, 22 strains were found to have class I integrons. The gene cassettes identified were dfrA1, dfrA15, dfrA5, and dfrA12 for trimethoprim; aac(6')-Ib for amikacin and tobramycin; aadA1 and aadA2 for streptomycin and spectinomycin; and ereA2 for erythromycin resistance. To our knowledge, this is the first report of the presence of dfrA5, dfrA12, aac(6')-Ib, and ereA2 cassettes in class I integrons of V. cholerae. Forty-three of 94 strains also had plasmids, and out of these, 14 contained both class I integrons and plasmids. Pulsed-field gel electrophoresis followed by Southern hybridization revealed that in the 14 plasmid-bearing strains, class I integrons resided either on chromosomes, on plasmids, or on both. Our results indicated that besides class I integrons and plasmids, a conjugative transposon element, SXT, possibly contributed to the multiple antibiotic resistance.

154 citations

Journal ArticleDOI
TL;DR: Findings collectively highlight that miR-199a-3p restricts metastasis, invasion and angiogenesis in HCC and hence it may be considered as one of the powerful effective therapeutics for management of HCC patients.
Abstract: Increasing significance of tumor–stromal interaction in development and progression of cancer implies that signaling molecules in the tumor microenvironment (TME) might be the effective therapeutic targets for hepatocellular carcinoma (HCC). Here, the role of microRNA miR-199a-3p in the regulation of TME and development of HCC has been investigated by several in vitro and in vivo assays. Expression of miR-199a-3p was observed significantly low in HCC tissues and its overexpression remarkably inhibited in vivo tumor growth and metastasis to lung in NOD-SCID mice. In vitro restoration of miR-199a-3p expression either in endothelial cells (ECs) or in cancer cells (CACs) significantly diminished migration of ECs in co-culture assay. Again incubation of miR-199a-3p transfected ECs with either conditioned media (CM) of CACs or recombinant VEGF has reduced tube formation, in ECs and it was also dropped upon growth in CM of either anti-VEGF antibody-treated or miR-199a-3p-transfected CACs. In addition, bioinformatics and luciferase-reporter assays revealed that miR-199a-3p inhibited VEGF secretion from CACs and VEGFR1 and VEGFR2 expression on ECs and thus restricted cross talk between CACs and ECs. Again, restoration of miR-199a-3p in hepatic stellate cells (HSCs) reduced migration and invasion of CACs in co-culture assay, while it was enhanced by the overexpression of HGF suggesting miR-199a-3p has hindered HSC-CACs cross talk probably by inhibiting HGF and regulating matrix metalloproteinase MMP2, which were found as targets of miR-199a-3p subsequently by luciferase-reporter assay and gelatin zymography, respectively. Thus, these findings collectively highlight that miR-199a-3p restricts metastasis, invasion and angiogenesis in HCC and hence it may be considered as one of the powerful effective therapeutics for management of HCC patients.

118 citations

Journal ArticleDOI
TL;DR: The results showed that the xylanase expression can reach up to 6% of the total soluble protein, avaluecomparable to high level expression reported for several non-cellulolyticproteins in tobacco chloroplasts, opening up new avenues for large scale production of several other industrially useful cellulolytic enzymes through chloroplast expression.
Abstract: Overproduction of cellulolytic enzymes through conventional nucleartransformation approaches posed a major challenge as they can potentiallydegrade the cell wall components and thereby affect transgenic plant growth anddevelopment. In this study, we have tested the possibility to over produce analkali-thermostable xylanase gene from Bacillus sp. StrainNG-27 in tobacco plants through chloroplast expression. Our results showed thatthe xylanase expression can reach up to 6% of the total soluble protein, avaluecomparable to high level expression reported for several non-cellulolyticproteins in tobacco chloroplasts. The chloroplast-expressed xylanase retainedits activity even when the leaves were dried under sun or at 42°C, offering flexibility in the agricultural system intransport and storage. The recombinant enzyme was purified to homogeneity usingsingle step chromatography with more than 85% recovery. Most importantly,transgenic plants were indistinguishable from the control untransformed plantsin their morphology, growth and in seed setting. These results open up newavenues for large scale production of several other industrially usefulcellulolytic enzymes through chloroplast expression.

104 citations

Journal ArticleDOI
29 Feb 2020-Vaccine
TL;DR: An overview of the present insights on the emergence and mechanisms of AMR in V. cholerae is presented.

98 citations


Cited by
More filters
01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

01 Feb 2016

1,970 citations

Journal ArticleDOI
TL;DR: Novel applications of molecular genetic techniques have provided good evidence that viral infection can significantly influence the composition and diversity of aquatic microbial communities, supporting the hypothesis that viruses play a significant role in microbial food webs.
Abstract: The discovery that viruses may be the most abundant organisms in natural waters, surpassing the number of bacteria by an order of magnitude, has inspired a resurgence of interest in viruses in the aquatic environment. Surprisingly little was known of the interaction of viruses and their hosts in nature. In the decade since the reports of extraordinarily large virus populations were published, enumeration of viruses in aquatic environments has demonstrated that the virioplankton are dynamic components of the plankton, changing dramatically in number with geographical location and season. The evidence to date suggests that virioplankton communities are composed principally of bacteriophages and, to a lesser extent, eukaryotic algal viruses. The influence of viral infection and lysis on bacterial and phytoplankton host communities was measurable after new methods were developed and prior knowledge of bacteriophage biology was incorporated into concepts of parasite and host community interactions. The new methods have yielded data showing that viral infection can have a significant impact on bacteria and unicellular algae populations and supporting the hypothesis that viruses play a significant role in microbial food webs. Besides predation limiting bacteria and phytoplankton populations, the specific nature of virus-host interaction raises the intriguing possibility that viral infection influences the structure and diversity of aquatic microbial communities. Novel applications of molecular genetic techniques have provided good evidence that viral infection can significantly influence the composition and diversity of aquatic microbial communities.

1,930 citations

Journal ArticleDOI
TL;DR: Vibrios harbour a wealth of diverse genomes as revealed by different genomic techniques including amplified fragment length polymorphism, multilocus sequence typing, repetetive extragenic palindrome PCR, ribotyping, and whole-genome sequencing, which are probably important driving forces in the evolution and speciation of vibrios.
Abstract: Vibrios are ubiquitous and abundant in the aquatic environment. A high abundance of vibrios is also detected in tissues and/or organs of various marine algae and animals, e.g., abalones, bivalves, corals, fish, shrimp, sponges, squid, and zooplankton. Vibrios harbour a wealth of diverse genomes as revealed by different genomic techniques including amplified fragment length polymorphism, multilocus sequence typing, repetetive extragenic palindrome PCR, ribotyping, and whole-genome sequencing. The 74 species of this group are distributed among four different families, i.e., Enterovibrionaceae, Photobacteriaceae, Salinivibrionaceae, and Vibrionaceae. Two new genera, i.e., Enterovibrio norvegicus and Grimontia hollisae, and 20 novel species, i.e., Enterovibrio coralii, Photobacterium eurosenbergii, V. brasiliensis, V. chagasii, V. coralliillyticus, V. crassostreae, V. fortis, V. gallicus, V. hepatarius, V. hispanicus, V. kanaloaei, V. neonatus, V. neptunius, V. pomeroyi, V. pacinii, V. rotiferianus, V. superstes, V. tasmaniensis, V. ezurae, and V. xuii, have been described in the last few years. Comparative genome analyses have already revealed a variety of genomic events, including mutations, chromosomal rearrangements, loss of genes by decay or deletion, and gene acquisitions through duplication or horizontal transfer (e.g., in the acquisition of bacteriophages, pathogenicity islands, and super-integrons), that are probably important driving forces in the evolution and speciation of vibrios. Whole-genome sequencing and comparative genomics through the application of, e.g., microarrays will facilitate the investigation of the gene repertoire at the species level. Based on such new genomic information, the taxonomy and the species concept for vibrios will be reviewed in the next years.

1,136 citations

Journal ArticleDOI
Keith Poole1
TL;DR: Given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents less impacted by efflux and in targeting efflux directly with efflux inhibitors.
Abstract: Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.

979 citations