scispace - formally typeset
Search or ask a question
Author

Amit Patel

Bio: Amit Patel is an academic researcher from University College London. The author has contributed to research in topics: Cervical cancer & Monocyte. The author has an hindex of 17, co-authored 47 publications receiving 1177 citations. Previous affiliations of Amit Patel include University of Hertfordshire & University of Bristol.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day, which is consistent with a model of sequential transition.
Abstract: In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses. Here, using human in vivo deuterium labeling, we demonstrate that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day. Subsequent labeling of intermediate and nonclassical monocytes is consistent with a model of sequential transition. Intermediate and nonclassical monocytes have longer circulating lifespans (∼4 and ∼7 d, respectively). In a human experimental endotoxemia model, a transient but profound monocytopenia was observed; restoration of circulating monocytes was achieved by the early release of classical monocytes from bone marrow. The sequence of repopulation recapitulated the order of maturation in healthy homeostasis. This developmental relationship between monocyte subsets was verified by fate mapping grafted human classical monocytes into humanized mice, which were able to differentiate sequentially into intermediate and nonclassical cells.

595 citations

Journal ArticleDOI
01 Jul 2018-BJUI
TL;DR: To identify areas of agreement and disagreement in the implementation of multi‐parametric magnetic resonance imaging of the prostate in the diagnostic pathway,mpMRI is used as a guide for clinical practice.
Abstract: ObjectivesTo identify areas of agreement and disagreement in the implementation of multi-parametric magnetic resonance imaging (mpMRI) of the prostate in the diagnostic pathway. Materials and MethodsFifteen UK experts in prostate mpMRI and/or prostate cancer management across the UK (involving nine NHS centres to provide for geographical spread) participated in a consensus meeting following the Research and Development Corporation and University of California-Los Angeles (UCLA-RAND) Appropriateness Method, and were moderated by an independent chair. The experts considered 354 items pertaining to who can request an mpMRI, prostate mpMRI protocol, reporting guidelines, training, quality assurance (QA) and patient management based on mpMRI levels of suspicion for cancer. Each item was rated for agreement on a 9-point scale. A panel median score of 7 constituted agreement' for an item; for an item to reach consensus', a panel majority scoring was required. ResultsConsensus was reached on 59% of items (208/354); these were used to provide recommendations for the implementation of prostate mpMRI in the UK. Key findings include prostate mpMRI requests should be made in consultation with the urological team; mpMRI scanners should undergo QA checks to guarantee consistently high diagnostic quality scans; scans should only be reported by trained and experienced radiologists to ensure that men with unsuspicious prostate mpMRI might consider avoiding an immediate biopsy. ConclusionsOur consensus statements demonstrate a set of criteria that are required for the practical dissemination of consistently high-quality prostate mpMRI as a diagnostic test before biopsy in men at risk.

105 citations

Journal ArticleDOI
TL;DR: To assess the diagnostic test accuracy of frozen section (index test) to diagnose histopathological ovarian cancer in women with suspicious pelvic masses as verified by paraffin section (reference standard), a test threshold was used for frozen section results as invasive cancer and negative test results as borderline and benign tumours.
Abstract: Background Women with suspected early-stage ovarian cancer need surgical staging which involves taking samples from areas within the abdominal cavity and retroperitoneal lymph nodes in order to inform further treatment. One potential strategy is to surgically stage all women with suspicious ovarian masses, without any histological information during surgery. This avoids incomplete staging, but puts more women at risk of potential surgical over-treatment. A second strategy is to perform a two-stage procedure to remove the pelvic mass and subject it to paraffin sectioning, which involves formal tissue fixing with formalin and paraffin embedding, prior to ultrathin sectioning and multiple site sampling of the tumour. Surgeons may then base further surgical staging on this histology, reducing the rate of over-treatment, but conferring additional surgical and anaesthetic morbidity. A third strategy is to perform a rapid histological analysis on the ovarian mass during surgery, known as 'frozen section'. Tissues are snap frozen to allow fine tissue sections to be cut and basic histochemical staining to be performed. Surgeons can perform or avoid the full surgical staging procedure depending on the results. However, this is a relatively crude test compared to paraffin sections, which take many hours to perform. With frozen section there is therefore a risk of misdiagnosing malignancy and understaging women subsequently found to have a presumed early-stage malignancy (false negative), or overstaging women without a malignancy (false positive). Therefore it is important to evaluate the accuracy and usefulness of adding frozen section to the clinical decision-making process. Objectives To assess the diagnostic test accuracy of frozen section (index test) to diagnose histopathological ovarian cancer in women with suspicious pelvic masses as verified by paraffin section (reference standard). Search methods We searched MEDLINE (January 1946 to January 2015), EMBASE (January 1980 to January 2015) and relevant Cochrane registers. Selection criteria Studies that used frozen section for intraoperative diagnosis of ovarian masses suspicious of malignancy, provided there was sufficient data to construct 2 x 2 tables. We excluded articles without an available English translation. Data collection and analysis Authors independently assessed the methodological quality of included studies using the Quality Assessment of Diagnostic Accuracy Studies tool (QUADAS-2) domains: patient selection, index test, reference standard, flow and timing. Data extraction converted 3 x 3 tables of per patient results presented in articles into 2 x 2 tables, for two index test thresholds. Main results All studies were retrospective, and the majority reported consecutive sampling of cases. Sensitivity and specificity results were available from 38 studies involving 11,181 participants (3200 with invasive cancer, 1055 with borderline tumours and 6926 with benign tumours, determined by paraffin section as the reference standard). The median prevalence of malignancy was 29% (interquartile range (IQR) 23% to 36%, range 11% to 63%). We assessed test performance using two thresholds for the frozen section test. Firstly, we used a test threshold for frozen sections, defining positive test results as invasive cancer and negative test results as borderline and benign tumours. The average sensitivity was 90.0% (95% confidence interval (CI) 87.6% to 92.0%; with most studies typically reporting range of 71% to 100%), and average specificity was 99.5% (95% CI 99.2% to 99.7%; range 96% to 100%). Similarly, we analysed sensitivity and specificity using a second threshold for frozen section, where both invasive cancer and borderline tumours were considered test positive and benign cases were classified as negative. Average sensitivity was 96.5% (95% CI 95.5% to 97.3%; typical range 83% to 100%), and average specificity was 89.5% (95% CI 86.6% to 91.9%; typical range 58% to 99%). Results were available from the same 38 studies, including the subset of 3953 participants with a frozen section result of either borderline or invasive cancer, based on final diagnosis of malignancy. Studies with small numbers of disease-negative cases (borderline cases) had more variation in estimates of specificity. Average sensitivity was 94.0% (95% CI 92.0% to 95.5%; range 73% to 100%), and average specificity was 95.8% (95% CI 92.4% to 97.8%; typical range 81% to 100%). Our additional analyses showed that, if the frozen section showed a benign or invasive cancer, the final diagnosis would remain the same in, on average, 94% and 99% of cases, respectively. In cases where the frozen section diagnosis was a borderline tumour, on average 21% of the final diagnoses would turn out to be invasive cancer. In three studies, the same pathologist interpreted the index and reference standard tests, potentially causing bias. No studies reported blinding pathologists to index test results when reporting paraffin sections. In heterogeneity analyses, there were no statistically significant differences between studies with pathologists of different levels of expertise. Authors' conclusions In a hypothetical population of 1000 patients (290 with cancer and 80 with a borderline tumour), if a frozen section positive test result for invasive cancer alone was used to diagnose cancer, on average 261 women would have a correct diagnosis of a cancer, and 706 women would be correctly diagnosed without a cancer. However, 4 women would be incorrectly diagnosed with a cancer (false positive), and 29 with a cancer would be missed (false negative). If a frozen section result of either an invasive cancer or a borderline tumour was used as a positive test to diagnose cancer, on average 280 women would be correctly diagnosed with a cancer and 635 would be correctly diagnosed without. However, 75 women would be incorrectly diagnosed with a cancer and 10 women with a cancer would be missed. The largest discordance is within the reporting of frozen section borderline tumours. Investigation into factors leading to discordance within centres and standardisation of criteria for reporting borderline tumours may help improve accuracy. Some centres may choose to perform surgical staging in women with frozen section diagnosis of a borderline ovarian tumour to reduce the number of false positives. In their interpretation of this review, readers should evaluate results from studies most typical of their population of patients.

84 citations

Journal ArticleDOI
TL;DR: Elevated matriptase expression in OA and the ability of matript enzyme to activate selective proMMPs as well as induce collagenase expression make this serine proteinase a key initiator and inducer of cartilage destruction in Oa.
Abstract: Objective Increasing evidence implicates serine proteinases in pathologic tissue turnover. The aim of this study was to assess the role of the transmembrane serine proteinase matriptase in cartilage destruction in osteoarthritis (OA). Methods Serine proteinase gene expression in femoral head cartilage obtained from either patients with hip OA or patients with fracture to the neck of the femur (NOF) was assessed using a low-density array. The effect of matriptase on collagen breakdown was determined in cartilage degradation models, while the effect on matrix metalloproteinase (MMP) expression was analyzed by real-time polymerase chain reaction. ProMMP processing was determined using sodium dodecyl sulfate–polyacrylamide gel electrophoresis/N-terminal sequencing, while its ability to activate proteinase-activated receptor 2 (PAR-2) was determined using a synovial perfusion assay in mice. Results Matriptase gene expression was significantly elevated in OA cartilage compared with NOF cartilage, and matriptase was immunolocalized to OA chondrocytes. We showed that matriptase activated proMMP-1 and processed proMMP-3 to its fully active form. Exogenous matriptase significantly enhanced cytokine-stimulated cartilage collagenolysis, while matriptase alone caused significant collagenolysis from OA cartilage, which was metalloproteinase-dependent. Matriptase also induced MMP-1, MMP-3, and MMP-13 gene expression. Synovial perfusion data confirmed that matriptase activates PAR-2, and we demonstrated that matriptase-dependent enhancement of collagenolysis from OA cartilage is blocked by PAR-2 inhibition. Conclusion Elevated matriptase expression in OA and the ability of matriptase to activate selective proMMPs as well as induce collagenase expression make this serine proteinase a key initiator and inducer of cartilage destruction in OA. We propose that the indirect effects of matriptase are mediated by PAR-2, and a more detailed understanding of these mechanisms may highlight important new therapeutic targets for OA treatment.

74 citations

Journal ArticleDOI
TL;DR: Cervical loop biopsy or simple hysterectomy combined with negative pelvic lymphadenectomy for small-volume stage 1B1 cervical cancer offers excellent prognosis in terms of survival and obstetric outcomes may be improved.

71 citations


Cited by
More filters
Journal Article
TL;DR: Schulz et al. as discussed by the authors investigated whether adult macrophages all share a common developmental origin and found that a population of yolk-sac-derived, tissue-resident macophages was able to develop and persist in adult mice in the absence of hematopoietic stem cells.
Abstract: Macrophage Development Rewritten Macrophages provide protection against a wide variety of infections and critically shape the inflammatory environment in many tissues. These cells come in many flavors, as determined by differences in gene expression, cell surface phenotype and specific function. Schulz et al. (p. 86, published online 22 March) investigated whether adult macrophages all share a common developmental origin. Immune cells, including most macrophages, are widely thought to arise from hematopoietic stem cells (HSCs), which require the transcription factor Myb for their development. Analysis of Myb-deficient mice revealed that a population of yolk-sac–derived, tissue-resident macrophages was able to develop and persist in adult mice in the absence of HSCs. Importantly, yolk sac–derived macrophages also contributed substantially to the tissue macrophage pool even when HSCs were present. In mice, a population of tissue-resident macrophages arises independently of bone marrow–derived stem cells. Macrophages and dendritic cells (DCs) are key components of cellular immunity and are thought to originate and renew from hematopoietic stem cells (HSCs). However, some macrophages develop in the embryo before the appearance of definitive HSCs. We thus reinvestigated macrophage development. We found that the transcription factor Myb was required for development of HSCs and all CD11bhigh monocytes and macrophages, but was dispensable for yolk sac (YS) macrophages and for the development of YS-derived F4/80bright macrophages in several tissues, such as liver Kupffer cells, epidermal Langerhans cells, and microglia—cell populations that all can persist in adult mice independently of HSCs. These results define a lineage of tissue macrophages that derive from the YS and are genetically distinct from HSC progeny.

1,673 citations

19 Nov 2012

1,653 citations

Journal ArticleDOI
TL;DR: A group of leaders in the field define ‘trained immunity’ as a biological process and discuss the innate stimuli and the epigenetic and metabolic reprogramming events that shape the induction of trained immunity.
Abstract: Immune memory is a defining feature of the acquired immune system, but activation of the innate immune system can also result in enhanced responsiveness to subsequent triggers. This process has been termed 'trained immunity', a de facto innate immune memory. Research in the past decade has pointed to the broad benefits of trained immunity for host defence but has also suggested potentially detrimental outcomes in immune-mediated and chronic inflammatory diseases. Here we define 'trained immunity' as a biological process and discuss the innate stimuli and the epigenetic and metabolic reprogramming events that shape the induction of trained immunity.

1,116 citations

Journal ArticleDOI
TL;DR: A mouse model recapitulating key features of CRS and neurotoxicity is described, offering a therapeutic strategy to tackle neurotoxicity and open new avenues to safer CAR T cell therapies.
Abstract: In the clinic, chimeric antigen receptor-modified T (CAR T) cell therapy is frequently associated with life-threatening cytokine-release syndrome (CRS) and neurotoxicity. Understanding the nature of these pathologies and developing treatments for them are hampered by the lack of appropriate animal models. Herein, we describe a mouse model recapitulating key features of CRS and neurotoxicity. In humanized mice with high leukemia burden, CAR T cell-mediated clearance of cancer triggered high fever and elevated IL-6 levels, which are hallmarks of CRS. Human monocytes were the major source of IL-1 and IL-6 during CRS. Accordingly, the syndrome was prevented by monocyte depletion or by blocking IL-6 receptor with tocilizumab. Nonetheless, tocilizumab failed to protect mice from delayed lethal neurotoxicity, characterized by meningeal inflammation. Instead, the IL-1 receptor antagonist anakinra abolished both CRS and neurotoxicity, resulting in substantially extended leukemia-free survival. These findings offer a therapeutic strategy to tackle neurotoxicity and open new avenues to safer CAR T cell therapies.

867 citations

Journal ArticleDOI
TL;DR: Advances in resolution of phenotype and gene expression facilitate the integration of mouse and human immunology, support efforts to unravel human DC function in vivo and continue to present new translational opportunities to medicine.
Abstract: Dendritic cells (DC) are a class of bone-marrow-derived cells arising from lympho-myeloid haematopoiesis that form an essential interface between the innate sensing of pathogens and the activation of adaptive immunity. This task requires a wide range of mechanisms and responses, which are divided between three major DC subsets: plasmacytoid DC (pDC), myeloid/conventional DC1 (cDC1) and myeloid/conventional DC2 (cDC2). Each DC subset develops under the control of a specific repertoire of transcription factors involving differential levels of IRF8 and IRF4 in collaboration with PU.1, ID2, E2-2, ZEB2, KLF4, IKZF1 and BATF3. DC haematopoiesis is conserved between mammalian species and is distinct from monocyte development. Although monocytes can differentiate into DC, especially during inflammation, most quiescent tissues contain significant resident populations of DC lineage cells. An extended range of surface markers facilitates the identification of specific DC subsets although it remains difficult to dissociate cDC2 from monocyte-derived DC in some settings. Recent studies based on an increasing level of resolution of phenotype and gene expression have identified pre-DC in human blood and heterogeneity among cDC2. These advances facilitate the integration of mouse and human immunology, support efforts to unravel human DC function in vivo and continue to present new translational opportunities to medicine.

758 citations