scispace - formally typeset
Search or ask a question
Author

Amit Singh

Bio: Amit Singh is an academic researcher from National Institute of Technology, Patna. The author has contributed to research in topics: Digital watermarking & Watermark. The author has an hindex of 57, co-authored 640 publications receiving 13795 citations. Previous affiliations of Amit Singh include Ithaca College & Center for Infectious Disease Research and Policy.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , the temperature distribution, geometry and size of the melt pool, and solidification parameters were computed using the heat transfer and material flow model for the directed energy deposition process.

12 citations

Journal ArticleDOI
TL;DR: This work has created the Hindi dataset for image captioning by manually translating the popular MSCOCO dataset from English to Hindi and shows that the proposed model outperforms other models.

12 citations

Journal ArticleDOI
TL;DR: P22 phage tail spike proteins have been immobilized on Si surfaces for optimized capture of host Salmonella enteric serovar Typhimurium and it was demonstrated that roughening of the Si surface before the TSP immobilization improves the bacterial capture 2-fold compared to a flat Si surface.
Abstract: Bacteriophage based technology has gained interest in developing pathogen detection platforms for biosensing applications. In this study, P22 phage tail spike proteins (TSPs) have been immobilized on Si surfaces for optimized capture of host Salmonella enteric serovar Typhimurium. It was then demonstrated that roughening of the Si surface before the TSP immobilization improves the bacterial capture 2-fold compared to a flat Si surface. Coarse, medium, fine and superfine size ridges were patterned on the Si surface using block copolymer layer and plasma etching and each surface was functionalized by TSPs for bacterial capture. The capture density increased with decreasing size of the ridge until it reached an optimum for fine ridges; the capture density decreased when the surface ridges were superfine and deep. This method shows a 22-fold and 3-fold increase in bacterial capture density compared to a Cys- and a His6-tag based oriented TSP immobilization, respectively. Bovine serum albumin (BSA) was used as a surface protective layer to prevent non-specific binding of bacteria and E. coli cells were used as control to demonstrate the specificity of recognition. Negligible binding was observed for control bacteria in presence of TSPs and the host bacteria in the absence of TSP on the surfaces.

12 citations

Journal ArticleDOI
TL;DR: In this article, the stability of biomolecules and nanoparticles during delivery, managing their biodistribution, and reducing the possible cytotoxic effects of the nanoparticles are investigated.
Abstract: Several limitations of conventional cancer treatment such as non-specific targeting, solubility problems, and ineffective entry of chemotherapeutics into cancer cells can be overcome by using nanotechnology targeted drug delivery systems. Some combinations of biomolecules and nanoparticles have proven to be excellent therapeutics for Non-small cell lung cancer (NSCLC) in the last decades. Targeted gene delivery has shown in vivo as well as in vitro promising results with therapeutic efficacy. Gene therapy has shown enhanced transfection efficiency and better targeting potential on several NSCLC cell lines. Still, there are several challenges in nanoparticle-mediated gene therapy, which include stability of biomolecules and nanoparticles during delivery, managing their biodistribution, and reducing the possible cytotoxic effects of the nanoparticles, which need to be solved before clinical trials. Evaluation of therapeutic efficacy of biomolecules and nanoparticle combination in gene therapy must be established to expand the application of nano-gene therapy in cancer treatment.

12 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors.
Abstract: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors. While the organization of the book is similar to previous editions, major emphasis has been placed on disorders that affect multiple organ systems. Important advances in genetics, immunology, and oncology are emphasized. Many chapters of the book have been rewritten and describe major advances in internal medicine. Subjects that received only a paragraph or two of attention in previous editions are now covered in entire chapters. Among the chapters that have been extensively revised are the chapters on infections in the compromised host, on skin rashes in infections, on many of the viral infections, including cytomegalovirus and Epstein-Barr virus, on sexually transmitted diseases, on diabetes mellitus, on disorders of bone and mineral metabolism, and on lymphadenopathy and splenomegaly. The major revisions in these chapters and many

6,968 citations

Journal ArticleDOI
TL;DR: A comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals, including a brief introduction to nucleation and growth within the context of metal Nanocrystal synthesis, followed by a discussion of the possible shapes that aMetal nanocrystal might take under different conditions.
Abstract: Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

4,927 citations