scispace - formally typeset
Search or ask a question
Author

Amitava Patra

Bio: Amitava Patra is an academic researcher from Indian Association for the Cultivation of Science. The author has contributed to research in topics: Nanoparticle & Photoluminescence. The author has an hindex of 53, co-authored 236 publications receiving 9637 citations. Previous affiliations of Amitava Patra include Indian National Association & Hebrew University of Jerusalem.


Papers
More filters
Journal ArticleDOI
TL;DR: Metal-semiconductor hybrid nanostructures are found to be very promising for photonic applications due to their exciton-plasmon interactions and the significance of porphyrin-based nanostructure for potential light-harvesting systems is discussed.
Abstract: Recent advances and the current status of challenging light-harvesting nanomaterials, such as semiconducting quantum dots (QDs), metal nanoparticles, semiconductor–metal heterostructures, π-conjugated semiconductor nanoparticles, organic–inorganic heterostructures, and porphyrin-based nanostructures, have been highlighted in this review. The significance of size-, shape-, and composition-dependent exciton decay dynamics and photoinduced energy transfer of QDs is addressed. A fundamental knowledge of these photophysical processes is crucial for the development of efficient light-harvesting systems, like photocatalytic and photovoltaic ones. Again, we have pointed out the impact of the metal-nanoparticle-based surface energy transfer process for developing light-harvesting systems. On the other hand, metal–semiconductor hybrid nanostructures are found to be very promising for photonic applications due to their exciton–plasmon interactions. Potential light-harvesting systems based on dye-doped π-conjugated s...

405 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of the Er3+ concentration and different codopants (Yb3+ and Yb3+) in the ZrO2 matrix on the upconverted emission were reported.
Abstract: Erbium-doped ZrO2 nanoparticles are prepared by a sol−emulsion−gel technique. The effects of the Er3+ concentration and different codopants (Yb3+ and Y3+) in the ZrO2 matrix on the upconverted emission are reported. Green and red upconversion emission at 550 and 670 nm were observed from these oxide nanocrystals with 980 nm excitation. The overall intensity decreases with an increasing concentration of erbium in zirconia. The presence of codopants (Y3+ and Yb3+) also increases the overall intensity of the upconverted emission. The emission spectra and the pump intensity dependence of the luminescence intensities are used to understand the excitation mechanism. These results confirm that upconverted emission in these materials is due to a two-photon excited-state absorption (ESA)/energy transfer upconversion (ETU) process.

372 citations

Journal ArticleDOI
TL;DR: In this article, the surface defect-related luminescence properties of SnO2 nanorods and nanoparticles using steady-state and time-resolved spectroscopy were demonstrated.
Abstract: We demonstrate the surface defect-related luminescence properties of SnO2 nanorods and nanoparticles using steady-state and time-resolved spectroscopy. Defect-related bands are identified by Raman and EPR spectroscopy. On the basis of the experimental results, we propose a schematic model for different relaxation processes in SnO2 nanocrystals upon photoexcitation. Analysis suggests that the visible emission of SnO2 nanocrystals is due to a transition of an electron from a level close to the conduction band edge to a deeply trapped hole in the bulk (V0••) of the SnO2 nanocrystals. Analysis suggests that the surface-related defects are more prominent in smaller nanocrystals than in nanorods. It is found that the PL emission and decay time strongly depend on the shape of the nanocrystals. This proposed model is further confirmed by time-resolved spectroscopy.

297 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the fluorescence intensity ratio (FIR) of two thermodynamically coupled excited states of Er3+ doped in BaTiO3 nanocrystals using a diode laser emitting at 980 nm as the excitation source.
Abstract: Frequency upconverted emissions centered at 526 and 547 nm from two thermodynamically coupled excited states of Er3+ doped in BaTiO3 nanocrystals were recorded in the temperature range from 322 to 466 K using a diode laser emitting at 980 nm as the excitation source. The ensemble measurements of the fluorescence intensity ratio (FIR) of the signals at 526 and 547 nm as a function of the temperature showed that the sensitivity (the rate in which the FIR changes with the temperature) of such sensor depends on the size of the nanocrystal. This is explained taking into consideration modifications of nonraditive relaxation mechanisms with the size of the nanocrystals.

271 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of carbon nanomaterial doping on the photophysical behavior of carbon dots has been analyzed by using steady-state and time-resolved spectroscopy, and it has been shown that carbon dots with boron co-doped with nitrogen have a higher QY with an average decay time of 12.8 ns.
Abstract: Doping in carbon nanomaterial with various hetero atoms draws attention due to their tunable properties. Herein, we have synthesized nitrogen containing carbon dots [C-dots (N)], phosphorus co-doped nitrogen containing carbon dots [C-dots (N, P)], and boron co-doped nitrogen containing carbon dots [C-dots (N, B)]; and detailed elemental analysis has been unveiled by X-ray photoelectron spectroscopy (XPS) measurements. Our emphasis is given to understand the effect of doping on the photophysical behavior of carbon dots by using steady-state and time-resolved spectroscopy. Nitrogen containing carbon dots have quantum yield (QY) of 64.0% with an average decay time of 12.8 ns. Photophysical properties (radiative decay rate and average decay time) are found to be increased for phosphorus co-doping carbon dots due to extra electron incorporation for n-type doping (phosphorus dopant) to carbon dots which favors the radiative relaxation pathways. On the contrary, boron (p-type dopant) co-doping with nitrogen cont...

258 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A brief history and review of geopolymer technology is presented with the aim of introducing the technology and the vast categories of materials that may be synthesized by alkali activation of aluminosilicates as mentioned in this paper.
Abstract: A brief history and review of geopolymer technology is presented with the aim of introducing the technology and the vast categories of materials that may be synthesized by alkali-activation of aluminosilicates. The fundamental chemical and structural characteristics of geopolymers derived from metakaolin, fly ash and slag are explored in terms of the effects of raw material selection on the properties of geopolymer composites. It is shown that the raw materials and processing conditions are critical in determining the setting behavior, workability and chemical and physical properties of geopolymeric products. The structural and chemical characteristics that are common to all geopolymeric materials are presented, as well as those that are determined by the specific interactions occurring in different systems, providing the ability for tailored design of geopolymers to specific applications in terms of both technical and commercial requirements.

3,302 citations

01 Jan 2016
TL;DR: The principles of fluorescence spectroscopy is universally compatible with any devices to read and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading principles of fluorescence spectroscopy. As you may know, people have look hundreds times for their favorite novels like this principles of fluorescence spectroscopy, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they cope with some harmful bugs inside their desktop computer. principles of fluorescence spectroscopy is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the principles of fluorescence spectroscopy is universally compatible with any devices to read.

2,960 citations

Journal ArticleDOI
TL;DR: This critical review describes the latest developments in the sensitization of near-infrared luminescence, "soft" luminescent materials (liquid crystals, ionic liquids, ionogels), electroluminescentmaterials for organic light emitting diodes, with emphasis on white light generation, and applications in luminecent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation.
Abstract: Recent startling interest for lanthanide luminescence is stimulated by the continuously expanding need for luminescent materials meeting the stringent requirements of telecommunication, lighting, electroluminescent devices, (bio-)analytical sensors and bio-imaging set-ups. This critical review describes the latest developments in (i) the sensitization of near-infrared luminescence, (ii) “soft” luminescent materials (liquid crystals, ionic liquids, ionogels), (iii) electroluminescent materials for organic light emitting diodes, with emphasis on white light generation, and (iv) applications in luminescent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation (500 references).

2,895 citations