Author
Amlan Chakrabarti
Other affiliations: National Institute of Technology Agartala, West Bengal University of Technology, Princeton University ...read more
Bio: Amlan Chakrabarti is an academic researcher from Information Technology University. The author has contributed to research in topics: Field-programmable gate array & Quantum computer. The author has an hindex of 22, co-authored 311 publications receiving 2141 citations. Previous affiliations of Amlan Chakrabarti include National Institute of Technology Agartala & West Bengal University of Technology.
Papers published on a yearly basis
Papers
More filters
TL;DR: The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates.
Abstract: Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 ( $\sqrt{s_{NN}}=$ 2.7--4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( $\mu_B > 500$ MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.
279 citations
TL;DR: The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates as discussed by the authors.
Abstract: Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.
157 citations
TL;DR: A Deep Convolutional Neural Network-based solution which can detect the COVID-19 +ve patients using chest X-Ray images using a classification accuracy higher than the state-of-the-art CNN models as well the compared benchmark algorithm is proposed.
Abstract: COVID-19 continues to have catastrophic effects on the lives of human beings throughout the world. To combat this disease it is necessary to screen the affected patients in a fast and inexpensive way. One of the most viable steps towards achieving this goal is through radiological examination, Chest X-Ray being the most easily available and least expensive option. In this paper, we have proposed a Deep Convolutional Neural Network-based solution which can detect the COVID-19 +ve patients using chest X-Ray images. Multiple state-of-the-art CNN models—DenseNet201, Resnet50V2 and Inceptionv3, have been adopted in the proposed work. They have been trained individually to make independent predictions. Then the models are combined, using a new method of weighted average ensembling technique, to predict a class value. To test the efficacy of the solution we have used publicly available chest X-ray images of COVID +ve and –ve cases. 538 images of COVID +ve patients and 468 images of COVID –ve patients have been divided into training, test and validation sets. The proposed approach gave a classification accuracy of 91.62% which is higher than the state-of-the-art CNN models as well the compared benchmark algorithm. We have developed a GUI-based application for public use. This application can be used on any computer by any medical personnel to detect COVID +ve patients using Chest X-Ray images within a few seconds.
135 citations
TL;DR: An extensive and in-depth literature study on current techniques for disaster prediction, detection and management has been done and the results are summarized according to various types of disasters.
Abstract: Thousands of human lives are lost every year around the globe, apart from significant damage on property, animal life, etc., due to natural disasters (e.g., earthquake, flood, tsunami, hurricane and other storms, landslides, cloudburst, heat wave, forest fire). In this paper, we focus on reviewing the application of data mining and analytical techniques designed so far for (i) prediction, (ii) detection, and (iii) development of appropriate disaster management strategy based on the collected data from disasters. A detailed description of availability of data from geological observatories (seismological, hydrological), satellites, remote sensing and newer sources like social networking sites as twitter is presented. An extensive and in-depth literature study on current techniques for disaster prediction, detection and management has been done and the results are summarized according to various types of disasters. Finally a framework for building a disaster management database for India hosted on open source Big Data platform like Hadoop in a phased manner has been proposed. The study has special focus on India which ranks among top five counties in terms of absolute number of the loss of human life.
120 citations
TL;DR: A deep learning approach for aspect extraction from text and analysis of users sentiment corresponding to the aspect is proposed and a seven layer deep convolutional neural network is used to tag each aspect in the opinionated sentences.
Abstract: Social networks have changed the communication patterns significantly. Information available from different social networking sites can be well utilized for the analysis of users opinion. Hence, the organizations would benefit through the development of a platform, which can analyze public sentiments in the social media about their products and services to provide a value addition in their business process. Over the last few years, deep learning is very popular in the areas of image classification, speech recognition, etc. However, research on the use of deep learning method in sentiment analysis is limited. It has been observed that in some cases the existing machine learning methods for sentiment analysis fail to extract some implicit aspects and might not be very useful. Therefore, we propose a deep learning approach for aspect extraction from text and analysis of users sentiment corresponding to the aspect. A seven layer deep convolutional neural network (CNN) is used to tag each aspect in the opinionated sentences. We have combined deep learning approach with a set of rule-based approach to improve the performance of aspect extraction method as well as sentiment scoring method. We have also tried to improve the existing rule-based approach of aspect extraction by aspect categorization with a predefined set of aspect categories using clustering method and compared our proposed method with some of the state-of-the-art methods. It has been observed that the overall accuracy of our proposed method is 0.87 while that of the other state-of-the-art methods like modified rule-based method and CNN are 0.75 and 0.80 respectively. The overall accuracy of our proposed method shows an increment of 7–12% from that of the state-of-the-art methods.
85 citations
Cited by
More filters
[...]
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).
13,246 citations
01 Apr 1997
TL;DR: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity.
Abstract: The objective of this paper is to give a comprehensive introduction to applied cryptography with an engineer or computer scientist in mind. The emphasis is on the knowledge needed to create practical systems which supports integrity, confidentiality, or authenticity. Topics covered includes an introduction to the concepts in cryptography, attacks against cryptographic systems, key use and handling, random bit generation, encryption modes, and message authentication codes. Recommendations on algorithms and further reading is given in the end of the paper. This paper should make the reader able to build, understand and evaluate system descriptions and designs based on the cryptographic components described in the paper.
2,188 citations
15 Oct 2004
2,118 citations