scispace - formally typeset
Search or ask a question
Author

Ammar Muthanna

Bio: Ammar Muthanna is an academic researcher from St. Petersburg State University of Telecommunications. The author has contributed to research in topics: Computer science & Edge computing. The author has an hindex of 16, co-authored 94 publications receiving 793 citations. Previous affiliations of Ammar Muthanna include Zagazig University & Saint Petersburg State Electrotechnical University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: A framework for IoT is presented that employs an edge computing layer of Fog nodes controlled and managed by an SDN network to achieve high reliability and availability for latency-sensitive IoT applications and achieves higher efficiency in terms of latency and resource utilization.
Abstract: Designing Internet of Things (IoT) applications faces many challenges including security, massive traffic, high availability, high reliability and energy constraints. Recent distributed computing paradigms, such as Fog and multi-access edge computing (MEC), software-defined networking (SDN), network virtualization and blockchain can be exploited in IoT networks, either combined or individually, to overcome the aforementioned challenges while maintaining system performance. In this paper, we present a framework for IoT that employs an edge computing layer of Fog nodes controlled and managed by an SDN network to achieve high reliability and availability for latency-sensitive IoT applications. The SDN network is equipped with distributed controllers and distributed resource constrained OpenFlow switches. Blockchain is used to ensure decentralization in a trustful manner. Additionally, a data offloading algorithm is developed to allocate various processing and computing tasks to the OpenFlow switches based on their current workload. Moreover, a traffic model is proposed to model and analyze the traffic indifferent parts of the network. The proposed algorithm is evaluated in simulation and in a testbed. Experimental results show that the proposed framework achieves higher efficiency in terms of latency and resource utilization.

110 citations

Journal ArticleDOI
TL;DR: This paper presents an advanced deep learning-based computational offloading algorithm for multilevel vehicular edge-cloud computing networks and proposes a distributed deep learning algorithm to find the near-optimal computational offload decisions in which a set of deep neural networks are used in parallel.
Abstract: The promise of low latency connectivity and efficient bandwidth utilization has driven the recent shift from vehicular cloud computing (VCC) towards vehicular edge computing (VEC). This paper presents an advanced deep learning-based computational offloading algorithm for multilevel vehicular edge-cloud computing networks. To conserve energy and guarantee the efficient utilization of shared resources among multiple vehicles, an integration model of computational offloading, and resource allocation is formulated as a binary optimization problem to minimize the total cost of the entire system in terms of time and energy. However, this problem is considered NP-hard and it is computationally prohibitive to solve this type of problem, particularly for large-scale vehicles, due to the curse-of-dimensionality problem. Therefore, an equivalent reinforcement learning form is generated and we propose a distributed deep learning algorithm to find the near-optimal computational offloading decisions in which a set of deep neural networks are used in parallel. Finally, simulation results show that the proposed algorithm can exhibit fast convergence and significantly reduce the overall consumption of an entire system compared to the benchmark solutions.

79 citations

Journal ArticleDOI
TL;DR: A dynamic optimization algorithm that is based on the Salp Swarm Optimization Algorithm is developed with the introduction of chaotic maps for enhancing the optimizer’s performance and results show that the proposed algorithm outperforms meta-heuristic algorithms and a game theory based algorithm in terms of execution time and reliability.

78 citations

Journal ArticleDOI
TL;DR: A Tactile Internet system structure is introduced, which employs software defined networking in the core of the cellular network and mobile edge computing in multi-levels and introduces a round trip latency of orders of 1 ms.
Abstract: One of the main design aspects of the Tactile Internet system is the 1 ms end-to-end latency, which is considered as being the main challenge with the system realization. Forced by recent development and capabilities of the fifth generation (5G) cellular system, the Tactile Internet will become a real. One way to overcome the 1 ms latency is to employ a centralized controller in the core of the network with a global knowledge of the system, together with the concept of network function virtualization (NFV). This is the idea behind the software defined networking (SDN). This paper introduces a Tactile Internet system structure, which employs SDN in the core of the cellular network and mobile edge computing (MEC) in multi-levels. The work is mainly concerned with the structure of the core network. The system is simulated over a reliable environment and introduces a round trip latency of orders of 1 ms. This can be interpreted by the reduction of intermediate nodes that are involved in the communication process.

68 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a decentralized data management system for smart and secure transportation that uses blockchain and the Internet of Things in a sustainable smart city environment to solve the data vulnerability problem.
Abstract: Smart cities provide citizens with smart and advanced services to improve their quality of life. However, it has been observed that the collection, storage, processing, and analysis of heterogeneous data that are usually borne by citizens will bear certain difficulties. The development of the Internet of Things, cloud computing, social media, and other Industry 4.0 influencers pushed technology into a smart society’s framework, bringing potential vulnerabilities to sensor data, services, and smart city applications. These vulnerabilities lead to data security problems. We propose a decentralized data management system for smart and secure transportation that uses blockchain and the Internet of Things in a sustainable smart city environment to solve the data vulnerability problem. A smart transportation mobility system demands creating an interconnected transit system to ensure flexibility and efficiency. This article introduces prior knowledge and then provides a Hyperledger Fabric-based data architecture that supports a secure, trusted, smart transportation system. The simulation results show the balance between the blockchain mining time and the number of blocks created. We also use the average transaction delay evaluation model to evaluate the model and to test the proposed system’s performance. The system will address residents’ and authorities’ security challenges of the transportation system in smart, sustainable cities and lead to better governance.

50 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Internet of Nano Things and Tactile Internet are driving the innovation in the H-IoT applications and the future course for improving the Quality of Service (QoS) using these new technologies are identified.
Abstract: The impact of the Internet of Things (IoT) on the advancement of the healthcare industry is immense. The ushering of the Medicine 4.0 has resulted in an increased effort to develop platforms, both at the hardware level as well as the underlying software level. This vision has led to the development of Healthcare IoT (H-IoT) systems. The basic enabling technologies include the communication systems between the sensing nodes and the processors; and the processing algorithms for generating an output from the data collected by the sensors. However, at present, these enabling technologies are also supported by several new technologies. The use of Artificial Intelligence (AI) has transformed the H-IoT systems at almost every level. The fog/edge paradigm is bringing the computing power close to the deployed network and hence mitigating many challenges in the process. While the big data allows handling an enormous amount of data. Additionally, the Software Defined Networks (SDNs) bring flexibility to the system while the blockchains are finding the most novel use cases in H-IoT systems. The Internet of Nano Things (IoNT) and Tactile Internet (TI) are driving the innovation in the H-IoT applications. This paper delves into the ways these technologies are transforming the H-IoT systems and also identifies the future course for improving the Quality of Service (QoS) using these new technologies.

446 citations

Journal ArticleDOI
07 Apr 2021
TL;DR: In this paper, the authors provide a comprehensive survey of the current developments towards 6G and elaborate the requirements that are necessary to realize the 6G applications, and summarize lessons learned from state-of-the-art research and discuss technical challenges that would shed a new light on future research directions toward 6G.
Abstract: Emerging applications such as Internet of Everything, Holographic Telepresence, collaborative robots, and space and deep-sea tourism are already highlighting the limitations of existing fifth-generation (5G) mobile networks. These limitations are in terms of data-rate, latency, reliability, availability, processing, connection density and global coverage, spanning over ground, underwater and space. The sixth-generation (6G) of mobile networks are expected to burgeon in the coming decade to address these limitations. The development of 6G vision, applications, technologies and standards has already become a popular research theme in academia and the industry. In this paper, we provide a comprehensive survey of the current developments towards 6G. We highlight the societal and technological trends that initiate the drive towards 6G. Emerging applications to realize the demands raised by 6G driving trends are discussed subsequently. We also elaborate the requirements that are necessary to realize the 6G applications. Then we present the key enabling technologies in detail. We also outline current research projects and activities including standardization efforts towards the development of 6G. Finally, we summarize lessons learned from state-of-the-art research and discuss technical challenges that would shed a new light on future research directions towards 6G.

273 citations

Journal ArticleDOI
TL;DR: A taxonomy of edge computing in 5G is established, which gives an overview of existing state-of-the-art solutions of edge Computing in5G on the basis of objectives, computational platforms, attributes, 5G functions, performance measures, and roles.
Abstract: 5G is the next generation cellular network that aspires to achieve substantial improvement on quality of service, such as higher throughput and lower latency. Edge computing is an emerging technology that enables the evolution to 5G by bringing cloud capabilities near to the end users (or user equipment, UEs) in order to overcome the intrinsic problems of the traditional cloud, such as high latency and the lack of security. In this paper, we establish a taxonomy of edge computing in 5G, which gives an overview of existing state-of-the-art solutions of edge computing in 5G on the basis of objectives, computational platforms, attributes, 5G functions, performance measures, and roles. We also present other important aspects, including the key requirements for its successful deployment in 5G and the applications of edge computing in 5G. Then, we explore, highlight, and categorize recent advancements in edge computing for 5G. By doing so, we reveal the salient features of different edge computing paradigms for 5G. Finally, open research issues are outlined.

214 citations

Journal ArticleDOI
TL;DR: An extensive survey on SDN and the edge computing ecosystem to solve the challenge of complex IoT management and comprehensively present security and privacy vulnerabilities in the SDIoT-Edge computing and detailed taxonomies of multiple attack possibilities in this paradigm.
Abstract: Millions of sensors continuously produce and transmit data to control real-world infrastructures using complex networks in the Internet of Things (IoT). However, IoT devices are limited in computational power, including storage, processing, and communication resources, to effectively perform compute-intensive tasks locally. Edge computing resolves the resource limitation problems by bringing computation closer to the edge of IoT devices. Providing distributed edge nodes across the network reduces the stress of centralized computation and overcomes latency challenges in the IoT. Therefore, edge computing presents low-cost solutions for compute-intensive tasks. Software-Defined Networking (SDN) enables effective network management by presenting a global perspective of the network. While SDN was not explicitly developed for IoT challenges, it can, however, provide impetus to solve the complexity issues and help in efficient IoT service orchestration. The current IoT paradigm of massive data generation, complex infrastructures, security vulnerabilities, and requirements from the newly developed technologies make IoT realization a challenging issue. In this research, we provide an extensive survey on SDN and the edge computing ecosystem to solve the challenge of complex IoT management. We present the latest research on Software-Defined Internet of Things orchestration using Edge (SDIoT-Edge) and highlight key requirements and standardization efforts in integrating these diverse architectures. An extensive discussion on different case studies using SDIoT-Edge computing is presented to envision the underlying concept. Furthermore, we classify state-of-the-art research in the SDIoT-Edge ecosystem based on multiple performance parameters. We comprehensively present security and privacy vulnerabilities in the SDIoT-Edge computing and provide detailed taxonomies of multiple attack possibilities in this paradigm. We highlight the lessons learned based on our findings at the end of each section. Finally, we discuss critical insights toward current research issues, challenges, and further research directions to efficiently provide IoT services in the SDIoT-Edge paradigm.

190 citations

Journal ArticleDOI
TL;DR: An exhaustive and a comprehensive review of the so-called salp swarm algorithm (SSA) and discussions its main characteristics, including its variants, like binary, modifications and multi-objective.
Abstract: This paper completely introduces an exhaustive and a comprehensive review of the so-called salp swarm algorithm (SSA) and discussions its main characteristics. SSA is one of the efficient recent meta-heuristic optimization algorithms, where it has been successfully utilized in a wide range of optimization problems in different fields, such as machine learning, engineering design, wireless networking, image processing, and power energy. This review shows the available literature on SSA, including its variants, like binary, modifications and multi-objective. Followed by its applications, assessment and evaluation, and finally the conclusions, which focus on the current works on SSA, suggest possible future research directions.

189 citations