scispace - formally typeset
Search or ask a question

Showing papers by "Amnon Yariv published in 2014"


Journal ArticleDOI
TL;DR: This work examines the phase noise of SCLs due to the spontaneous recombination of excited carriers radiating into the lasing mode as mandated by quantum mechanics and proposes a new design paradigm for the SCL, which removes most of the modal energy from the optically lossy III-V active region.
Abstract: The semiconductor laser (SCL) is the principal light source powering the worldwide optical fiber network. The ever-increasing demand for data is causing the network to migrate to phase-coherent modulation formats, which place strict requirements on the temporal coherence of the light source that no longer can be met by current SCLs. This failure can be traced directly to the canonical laser design, in which photons are both generated and stored in the same, optically lossy, III-V material. This leads to an excessive and large amount of noisy spontaneous emission commingling with the laser mode, thereby degrading its coherence. High losses also decrease the amount of stored optical energy in the laser cavity, magnifying the effect of each individual spontaneous emission event on the phase of the laser field. Here, we propose a new design paradigm for the SCL. The keys to this paradigm are the deliberate removal of stored optical energy from the lossy III-V material by concentrating it in a passive, low-loss material and the incorporation of a very high-Q resonator as an integral (i.e., not externally coupled) part of the laser cavity. We demonstrate an SCL with a spectral linewidth of 18 kHz in the telecom band around 1.55 μm, achieved using a single-mode silicon resonator with Q of 106.

116 citations


Patent
30 Dec 2014
TL;DR: In this paper, a detection apparatus and method for FMCW LIDAR employ signals whose frequencies are modified so that low-cost and low-speed photodetector arrays, such as CCD or CMOS cameras, can be employed for range detection.
Abstract: A detection apparatus and method for FMCW LIDAR employ signals whose frequencies are modified so that low-cost and low-speed photodetector arrays, such as CCD or CMOS cameras, can be employed for range detection. The LIDAR is designed to measure the range z to a target and includes a single mode swept frequency laser (SFL), whose optical frequency is varied with time, as a result of which, a target beam which is reflected back by the target is shifted in frequency from a reference beam by an amount that is proportional to the relative range z to the target. The reflected target beam is combined with the reference beam and detected by the photodetector array. By first modulating at least one of the target and reference beams such that the difference between the frequencies of the reflected target beam and the reference beam is reduced to a level that is within the bandwidth of the photodetector array, the need for high-speed detector arrays for full-field imaging is obviated.

21 citations


Proceedings ArticleDOI
TL;DR: In this paper, the authors present a dynamical simulation of Brillouin scattering in a Yb-doped fiber amplifier that numerically solves the differential equations in z and t describing the laser, Stokes and pump waves, the inversion, and the density fluctuations that seed the scattering process.
Abstract: When scaling CW single-mode fiber amplifiers to high power, the first nonlinear limitation that appears for narrowlinewidth seed lasers is stimulated Brillouin scattering (SBS). We present a dynamical simulation of Brillouin scattering in a Yb-doped fiber amplifier that numerically solves the differential equations in z and t describing the laser, Stokes and pump waves, the inversion, and the density fluctuations that seed the scattering process. We compare the model to experimental data, and show that a linearly chirped seed laser is an efficient form of SBS suppression; especially for long delivery fibers. The frequency chirp decreases the interaction length by chirping through the Brillouin resonance in a time that is short compared to the fiber transit time. The seed has a highly linear chirp of 10 14 – 10 16 Hz/s at 1064 nm which preserves a well-defined phase relationship in time. This method of SBS suppression retains a long effective coherence length for purposes of coherent combining, while at high chirps appears to the SBS as a large linewidth, increasing the threshold. An increase in fiber length increases the laser bandwidth as seen by the SBS, leading to a fiberlength- independent SBS threshold.

11 citations


Proceedings ArticleDOI
TL;DR: In this paper, the effect of frequency-chirped seed on the backoff of the coherent laser/Stokes interaction was investigated at the 600W level, and the impact of chirped seeds on multimode instability was addressed theoretically.
Abstract: When seeding a high power fiber amplifier with a frequency-chirped seed, the backward Brillouin scattering can be kept at the spontaneous level because the coherent laser/Stokes interaction is interrupted. Operating a conventional vertical cavity surface-emitting diode laser in an optoelectronic feedback loop can yield a linear frequency chirp of ~1016 Hz/s at a constant output power. The simple and deterministic variation of phase with time preserves temporal coherence, in the sense that it is straightforward to coherently combine multiple amplifiers despite a large length mismatch. The seed bandwidth as seen by the counter-propagating SBS is large, and also increases linearly with fiber length, resulting in a nearly-length-independent SBS threshold. Experimental results at the 600W level will be presented. The impact of a chirped seed on multimode instability is also addressed theoretically.

9 citations


Patent
30 Jun 2014
TL;DR: In this article, the authors propose a low loss material, which stores the preponderant optical energy portion distributed apart from the active material, and a buffer material disposed between the low loss and active material to control a ratio of the optical energy stored in the low-loss material to a portion of the active energy in the active materials.
Abstract: A laser resonator includes an active material, which amplifies light associated with an optical gain of the resonator, and passive materials disposed in proximity with the active material. The resonator oscillates over one or more optical modes, each of which corresponds to a particular spatial energy distribution and resonant frequency. Based on a characteristic of the passive materials, for the particular spatial energy distribution corresponding to at least one of the optical modes, a preponderant portion of optical energy is distributed apart from the active material. The passive materials may include a low loss material, which stores the preponderant optical energy portion distributed apart from the active material, and a buffer material disposed between the low loss material and the active material, which controls a ratio of the optical energy stored in the low loss material to a portion of the optical energy in the active material.

9 citations


Proceedings ArticleDOI
TL;DR: In this article, a compressive sensing swept source optical coherence tomography (SSOCT) system was proposed to enable high speed images to be taken while maintaining the high resolution offered from a large bandwidth sweep.
Abstract: We propose and demonstrate a novel a compressive sensing swept source optical coherence tomography (SSOCT) system that enables high speed images to be taken while maintaining the high resolution offered from a large bandwidth sweep. Conventional SSOCT systems sweep the optical frequency of a laser ω(t) to determine the depth of the reflectors at a given lateral location. A scatterer located at delay τ appears as a sinusoid cos (ω(t)τ ) at the photodetector. The finite optical chirp rate and the speed of analog to digital and digital to analog converters limit the acquisition rate of an axial scan. The proposed acquisition modality enables much faster image acquisition rates by interrogating the beat signal at randomly selected optical frequencies while preserving resolution and depth of field. The system utilizes a randomly accessible laser, a modulated grating Y-branch laser, to sample the interference pattern from a scene at randomly selected optical frequencies over an optical bandwidth of 5 THz , corresponding to a resolution of 30 μm in air. The depth profile is then reconstructed using an l_1 minimization algorithm with a LASSO constraint. Signal-dependent noise sources, shot noise and phase noise, are analyzed and taken into consideration during the recovery. Redundant dictionaries are used to improve the reconstruction of the depth profile. A compression by a factor of 10 for sparse targets up to a depth of 15 mm in noisy environments is shown.

1 citations