scispace - formally typeset
Search or ask a question

Showing papers by "Amnon Yariv published in 2020"


Journal ArticleDOI
TL;DR: This concept is based on a recent demonstration of the optical frequency modulation of the free-electron quantum electron wave function by an ultrafast laser beam, and it is asserted that pulses of such QEWs correlated in their modulation phase, interact resonantly with two-level systems, inducing resonant quantum transitions.
Abstract: Here we present a new paradigm of free-electron-bound-electron resonant interaction. This concept is based on a recent demonstration of the optical frequency modulation of the free-electron quantum electron wave function (QEW) by an ultrafast laser beam. We assert that pulses of such QEWs correlated in their modulation phase, interact resonantly with two-level systems, inducing resonant quantum transitions when the transition energy ΔE=ℏω_{21} matches a harmonic of the modulation frequency ω_{21}=nω_{b}. Employing this scheme for resonant cathodoluminescence and resonant EELS combines the atomic level spatial resolution of electron microscopy with the high spectral resolution of lasers.

77 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a derivation of a general and direct relationship between the SchawlowTownes (S-T) linewidth and the power spectral density (PSD) function of the laser frequency fluctuation.
Abstract: Lasers and especially semiconductor lasers (SCLs) are playing a major role in advanced technological and scientific tasks ranging from sensing, fundamental investigations in quantum optics and communications. The demand for ever-increasing accuracy and communication rates has driven these applications to employ phase modulation and coherent detection. The main laser attribute that comes into play is its coherence which is usually quantified by either the Schawlow-Townes (S-T) linewidth, the spectral width of the laser field, or the power spectral density (PSD) function of the laser frequency fluctuation. In this paper, we present a derivation of a general and direct relationship between these two coherence measures. We refer to the result as the Central Relation. The relation applies independently of the physical origin of the noise. Experiments are described which demonstrate the validity of the Central Relation and at the same time suggest new methods of controlling frequency noise at base band by optical filtering.

14 citations


Posted Content
TL;DR: In this paper, a relativistic quantum mechanical theory for free-electron bounded-Electron Resonant Interaction (FEBERI) is presented, where the electrons are represented as quantum electron wavepackets (QEWs).
Abstract: Free-Electron Bound-Electron Resonant Interaction (FEBERI) is the resonant inelastic interaction of periodically density-bunched free electrons with a quantum two level system. We present a comprehensive relativistic quantum mechanical theory for this interaction in a model in which the electrons are represented as quantum electron wavepackets (QEW). The analysis reveals the wave-particle duality nature of the QEW, delineating the point-particle-like and wave-like interaction regimes, and manifesting the physical reality of the wavefunction dimensions and its density modulation characteristics in interaction with matter. The analysis comprehends the case of laser-beam-modulated multiple QEWs that are modulation-phase correlated. Based on the Born interpretation of the electron wavefunction we predict quantum transitions enhancement proportional to the number of electrons squared, analogous to superradiance.

8 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that the heterogeneous Si/III-V lasers can preserve their phase coherence under much larger optical feedback and therefore function without severe degradation in isolator-free coherent optical communication systems.
Abstract: Coherent optical communication is considered as an indispensable solution to the ever-increasing demand for higher data rates. To reduce the cost and form factor of coherent transceivers, full integration of photonic devices including lasers, modulators, amplifiers, photodetectors, and other components is necessary. However, as fabricating optical isolators on chip remains extremely challenging, optical feedback, which can degrade the coherence of semiconductor lasers, becomes the main obstacle, thwarting large-scale photonic integration. An appealing solution to such a problem is to use semiconductor lasers with intrinsic insensitivity to optical feedback as the integrated light sources. The heterogenous Si/III-V lasers, with their built-in high-Q resonators, are expected to possess a robustness to optical feedback which exceeds by several orders of magnitude compared to commercial III-V distributed feedback (DFB) lasers, which will be validated here. We present data showing that the heterogeneous Si/III-V lasers can preserve their phase coherence under much larger optical feedback and therefore function without severe degradation in isolator-free coherent optical communication systems.

7 citations


Journal ArticleDOI
TL;DR: A strategy aimed at weaning semiconductor lasers from their dependence on external isolators, and larger values of internal Qs, achievable by employing resonator material of lower losses and improved optical design, should further increase the isolation margin and thus obviate the need for isolators altogether.
Abstract: In this paper, we propose and demonstrate a solution to the problem of coherence degradation and collapse caused by the back reflection of laser power into the laser resonator. The problem is most onerous in semiconductor lasers (SCLs), which are normally coupled to optical fibers, and results in the fact that practically every commercial SCL has appended to it a Faraday-effect isolator that blocks most of the reflected optical power preventing it from entering the laser resonator. The isolator assembly is many times greater in volume and cost than the SCL itself. This problem has resisted a practical and economic solution despite decades of effort and remains the main obstacle to the emergence of a CMOS-compatible photonic integrated circuit technology. A simple solution to the problem is thus of major economic and technological importance. We propose a strategy aimed at weaning semiconductor lasers from their dependence on external isolators. Lasers with large internal Q-factors can tolerate large reflections, limited only by the achievable Q values, without coherence collapse. A laser design is demonstrated on the heterogeneous Si/III-V platform that can withstand 25 dB higher reflected power compared to commercial DFB lasers. Larger values of internal Qs, achievable by employing resonator material of lower losses and improved optical design, should further increase the isolation margin and thus obviate the need for isolators altogether.

6 citations


Journal ArticleDOI
TL;DR: The use of a high-coherence hybrid silicon (Si)/III-V semiconductor laser as the light source for a transmitter generating 20 Gbaud 16- and 64- quadrature amplitude modulated (QAM) data signals over an 80 km single-mode fiber (SMF) link is experimentally demonstrated.
Abstract: We experimentally demonstrate the use of a high-coherence hybrid silicon (Si)/III–V semiconductor laser as the light source for a transmitter generating 20 Gbaud 16- and 64- quadrature amplitude modulated (QAM) data signals over an 80 km single-mode fiber (SMF) link. The hybrid Si/III–V laser has a measured Schawlow–Townes linewidth of ${\sim}{10}\;{\rm kHz}$∼10kHz, which is achieved by storing modal optical energy in low-loss Si, rather than the relatively lossy III–V materials. We measure a received bit error rate (BER) of ${4.1} \times {{10}^{ - 3}}$4.1×10−3 when transmitting the 64-QAM data over an 80 km SMF using the hybrid Si/III–V laser. Furthermore, we measure a BER of $ {\lt} {1} \times {{10}^{ - 4}}$<1×10−4 with the Viterbi–Viterbi digital carrier phase recovery method when transmitting the 16-QAM data over an 80 km SMF using the hybrid Si/III–V laser. This performance is achieved at power penalties lower than those obtained with an exemplary distributed feedback laser and slightly higher than those with an exemplary narrow-linewidth external cavity laser.

5 citations