scispace - formally typeset
Search or ask a question
Author

Amnon Yariv

Bio: Amnon Yariv is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Laser & Semiconductor laser theory. The author has an hindex of 103, co-authored 1082 publications receiving 55256 citations. Previous affiliations of Amnon Yariv include University of California, Santa Barbara & Watkins-Johnson Company.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel geometry for a Mach-Zehnder interferometer in which one arm of the interferometers consists of serially coupled microresonators and the other a simple ridge waveguide is proposed.
Abstract: We propose a novel geometry for a Mach-Zehnder interferometer in which one arm of the interferometer consists of serially coupled microresonators and the other a simple ridge waveguide. The device was fabricated in an optical polymer and its spectral characteristics were measured at telecommunications wavelengths. The serially coupled rings are modeled using a simple transfer matrix approach. Good agreement is found between the measurement and the theory.

81 citations

Patent
11 Jun 1996
TL;DR: In this article, the same light that causes the photopolymerization is contained by the change in index of refraction that is caused by the polymerization, which can be self-focusing or self-trapping light can be used.
Abstract: A polymer material is exposed to radiation of a type that changes some aspect of the polymer's radiation passing properties. The radiation that caused the property change is then contained by the material. The property change can be self-focusing or self-trapping light can be used. In that case, the same light that causes the photopolymerization is contained by the change in index of refraction that is caused by the polymerization.

80 citations

Journal ArticleDOI
TL;DR: In this article, a two-dimensional photonic crystal patterned into a thin dielectric slab waveguide is shown to alter drastically the lifetime of spontaneous emission as well as the radiation pattern.
Abstract: A two-dimensional photonic crystal patterned into a thin dielectric slab waveguide is shown to alter drastically the lifetime of spontaneous emission as well as the radiation pattern. This means that although the light extraction efficiency can be greatly enhanced, inhibited spontaneous emission within the photonic bandgap can result in low power output from such a structure. Strongly inhibited emission is found within the photonic bandgap as well as enhanced emission into the conduction band modes for certain geometries. Coupled with enhanced extraction efficiency in the photonic conduction band, this results in the possibility of a structure with increased total power efficiency.

80 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe a mode-locked laser in terms of traveling pulses of light and show that the energy absorbed by a saturable absorber is a minimum if the pulselength of the pulses is minimum, and that two pulses are essentially as favorable as one if they meet at the position of the dye cell.
Abstract: In this paper we describe a mode-locked laser in terms of traveling pulses of light. We show that the energy absorbed by a saturable absorber is a minimum if the pulselength is a minimum, and that two pulses are essentially as favorable as one if they meet at the position of the dye cell. Under steady-state pulsing conditions, however, we show that the pulses will have a width which depends on their energy. We find that for parameters appropriate to present Nd: glass experiments, the expected length is about 10-11seconds, in agreement with observations. Finally, we demonstrate the rather surprising result that a linearly dispersive medium does not broaden the mode-locked laser pulses to first order.

80 citations

Journal ArticleDOI
TL;DR: In this article, a simple model for quantum well lasers with gain contributions not only from the fundamental (n=1) state, but simultaneously from the second quantized (n = 2) state as well is presented.
Abstract: Newly observed features of quantum well lasers are presented and explained with the aid of a simple model. These involve lasing with gain contributions not only from the fundamental (n=1) state, but simultaneously from the second quantized (n=2) state as well. Experimental data for current pumped GaAlAs/GaAs single quantum well lasers are presented. Very high resonator losses (≳100 cm−1) force the lasers to augment their gain with major contributions from the second quantized state. The main signature of n=2 lasing, a sudden and large increase in the lasing photon energy, is observed and explained by the theory.

80 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

01 Nov 1985
TL;DR: This month's guest columnist, Steve Bible, N7HPR, is completing a master’s degree in computer science at the Naval Postgraduate School in Monterey, California, and his research area closely follows his interest in amateur radio.
Abstract: Spread Spectrum It’s not just for breakfast anymore! Don't blame me, the title is the work of this month's guest columnist, Steve Bible, N7HPR (n7hpr@tapr.org). While cruising the net recently, I noticed a sudden bump in the number of times Spread Spectrum (SS) techniques were mentioned in the amateur digital areas. While QEX has discussed SS in the past, we haven't touched on it in this forum. Steve was a frequent cogent contributor, so I asked him to give us some background. Steve enlisted in the Navy in 1977 and became a Data Systems Technician, a repairman of shipboard computer systems. In 1985 he was accepted into the Navy’s Enlisted Commissioning Program and attended the University of Utah where he studied computer science. Upon graduation in 1988 he was commissioned an Ensign and entered Nuclear Power School. His subsequent assignment was onboard the USS Georgia, a trident submarine stationed in Bangor, Washington. Today Steve is a Lieutenant and he is completing a master’s degree in computer science at the Naval Postgraduate School in Monterey, California. His areas of interest are digital communications, amateur satellites, VHF/UHF contesting, and QRP. His research area closely follows his interest in amateur radio. His thesis topic is Multihop Packet Radio Routing Protocol Using Dynamic Power Control. Steve is also the AMSAT Area Coordinator for the Monterey Bay area. Here's Steve, I'll have some additional comments at the end.

8,781 citations

Book
15 May 2007
TL;DR: In this paper, the authors discuss the role of surface plasmon polaritons at metal/insulator interfaces and their application in the propagation of surfaceplasmon waveguides.
Abstract: Fundamentals of Plasmonics.- Electromagnetics of Metals.- Surface Plasmon Polaritons at Metal / Insulator Interfaces.- Excitation of Surface Plasmon Polaritons at Planar Interfaces.- Imaging Surface Plasmon Polariton Propagation.- Localized Surface Plasmons.- Electromagnetic Surface Modes at Low Frequencies.- Applications.- Plasmon Waveguides.- Transmission of Radiation Through Apertures and Films.- Enhancement of Emissive Processes and Nonlinearities.- Spectroscopy and Sensing.- Metamaterials and Imaging with Surface Plasmon Polaritons.- Concluding Remarks.

7,238 citations