scispace - formally typeset
Search or ask a question
Author

Amol Deshpande

Bio: Amol Deshpande is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Query optimization & Graph (abstract data type). The author has an hindex of 46, co-authored 158 publications receiving 9976 citations. Previous affiliations of Amol Deshpande include University of California, Berkeley & Birla Institute of Technology and Science.


Papers
More filters
Proceedings Article
01 Jan 2003
TL;DR: The next generation Telegraph system, called TelegraphCQ, is focused on meeting the challenges that arise in handling large streams of continuous queries over high-volume, highly-variable data streams and leverages the PostgreSQL open source code base.
Abstract: Increasingly pervasive networks are leading towards a world where data is constantly in motion. In such a world, conventional techniques for query processing, which were developed under the assumption of a far more static and predictable computational environment, will not be sufficient. Instead, query processors based on adaptive dataflow will be necessary. The Telegraph project has developed a suite of novel technologies for continuously adaptive query processing. The next generation Telegraph system, called TelegraphCQ, is focused on meeting the challenges that arise in handling large streams of continuous queries over high-volume, highly-variable data streams. In this paper, we describe the system architecture and its underlying technology, and report on our ongoing implementation effort, which leverages the PostgreSQL open source code base. We also discuss open issues and our research agenda.

1,248 citations

Book ChapterDOI
31 Aug 2004
TL;DR: This paper enrichs interactive sensor querying with statistical modeling techniques, and demonstrates that such models can help provide answers that are both more meaningful, and, by introducing approximations with probabilistic confidences, significantly more efficient to compute in both time and energy.
Abstract: Declarative queries are proving to be an attractive paradigm for ineracting with networks of wireless sensors. The metaphor that "the sensornet is a database" is problematic, however, because sensors do not exhaustively represent the data in the real world. In order to map the raw sensor readings onto physical reality, a model of that reality is required to complement the readings. In this paper, we enrich interactive sensor querying with statistical modeling techniques. We demonstrate that such models can help provide answers that are both more meaningful, and, by introducing approximations with probabilistic confidences, significantly more efficient to compute in both time and energy. Utilizing the combination of a model and live data acquisition raises the challenging optimization problem of selecting the best sensor readings to acquire, balancing the increase in the confidence of our answer against the communication and data acquisition costs in the network. We describe an exponential time algorithm for finding the optimal solution to this optimization problem, and a polynomial-time heuristic for identifying solutions that perform well in practice. We evaluate our approach on several real-world sensor-network data sets, taking into account the real measured data and communication quality, demonstrating that our model-based approach provides a high-fidelity representation of the real phenomena and leads to significant performance gains versus traditional data acquisition techniques.

1,218 citations

Proceedings ArticleDOI
09 Jun 2003
TL;DR: The current version of TelegraphCQ is shown, which is implemented by leveraging the code base of the open source PostgreSQL database system, which found that a significant portion of the PostgreSQL code was easily reusable.
Abstract: At Berkeley, we are developing TelegraphCQ [1, 2], a dataflow system for processing continuous queries over data streams. TelegraphCQ is based on a novel, highly-adaptive architecture supporting dynamic query workloads in volatile data streaming environments. In this demonstration we show our current version of TelegraphCQ, which we implemented by leveraging the code base of the open source PostgreSQL database system. Although TelegraphCQ differs significantly from a traditional database system, we found that a significant portion of the PostgreSQL code was easily reusable. We also found the extensibility features of PostgreSQL very useful, particularly its rich data types and the ability to load user-developed functions. Challenges: As discussed in [1], sharing and adaptivity are our main techniques for implementing a continuous query system. Doing this in the codebase of a conventional database posed a number of challenges:

767 citations

Proceedings ArticleDOI
03 Apr 2006
TL;DR: This paper proposes a robust approximate technique called Ken that uses replicated dynamic probabilistic models to minimize communication from sensor nodes to the network’s PC base station, and shows that Ken is well suited to anomaly- and event-detection applications.
Abstract: Wireless sensor networks are proving to be useful in a variety of settings. A core challenge in these networks is to minimize energy consumption. Prior database research has proposed to achieve this by pushing data-reducing operators like aggregation and selection down into the network. This approach has proven unpopular with early adopters of sensor network technology, who typically want to extract complete "dumps" of the sensor readings, i.e., to run "SELECT *" queries. Unfortunately, because these queries do no data reduction, they consume significant energy in current sensornet query processors. In this paper we attack the "SELECT " problem for sensor networks. We propose a robust approximate technique called Ken that uses replicated dynamic probabilistic models to minimize communication from sensor nodes to the network’s PC base station. In addition to data collection, we show that Ken is well suited to anomaly- and event-detection applications. A key challenge in this work is to intelligently exploit spatial correlations across sensor nodes without imposing undue sensor-to-sensor communication burdens to maintain the models. Using traces from two real-world sensor network deployments, we demonstrate that relatively simple models can provide significant communication (and hence energy) savings without undue sacrifice in result quality or frequency. Choosing optimally among even our simple models is NPhard, but our experiments show that a greedy heuristic performs nearly as well as an exhaustive algorithm.

504 citations

Book
01 Jul 2007
TL;DR: Adaptive Query Processing as mentioned in this paper surveys the fundamental issues, techniques, costs, and benefits of adaptive query processing and provides a broad overview of the field, identifying the dimensions of adaptive techniques.
Abstract: Adaptive Query Processing surveys the fundamental issues, techniques, costs, and benefits of adaptive query processing. It begins with a broad overview of the field, identifying the dimensions of adaptive techniques. It then looks at the spectrum of approaches available to adapt query execution at runtime - primarily in a non-streaming context. The emphasis is on simplifying and abstracting the key concepts of each technique, rather than reproducing the full details available in the papers. The authors identify the strengths and limitations of the different techniques, demonstrate when they are most useful, and suggest possible avenues of future research. Adaptive Query Processing serves as a valuable reference for students of databases, providing a thorough survey of the area. Database researchers will benefit from a more complete point of view, including a number of approaches which they may not have focused on within the scope of their own research.

279 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Proceedings ArticleDOI
03 Jun 2002
TL;DR: The need for and research issues arising from a new model of data processing, where data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, time-varying data streams are motivated.
Abstract: In this overview paper we motivate the need for and research issues arising from a new model of data processing. In this model, data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, time-varying data streams. In addition to reviewing past work relevant to data stream systems and current projects in the area, the paper explores topics in stream query languages, new requirements and challenges in query processing, and algorithmic issues.

2,933 citations

01 Jan 2002
TL;DR: This thesis will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in Dbns, and how to learn DBN models from sequential data.
Abstract: Dynamic Bayesian Networks: Representation, Inference and Learning by Kevin Patrick Murphy Doctor of Philosophy in Computer Science University of California, Berkeley Professor Stuart Russell, Chair Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linear-Gaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data. In particular, the main novel technical contributions of this thesis are as follows: a way of representing Hierarchical HMMs as DBNs, which enables inference to be done in O(T ) time instead of O(T ), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T ) space instead of O(T ); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of applying Rao-Blackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.

2,757 citations

Journal ArticleDOI
01 May 2009
TL;DR: This paper breaks down the energy consumption for the components of a typical sensor node, and discusses the main directions to energy conservation in WSNs, and presents a systematic and comprehensive taxonomy of the energy conservation schemes.
Abstract: In the last years, wireless sensor networks (WSNs) have gained increasing attention from both the research community and actual users. As sensor nodes are generally battery-powered devices, the critical aspects to face concern how to reduce the energy consumption of nodes, so that the network lifetime can be extended to reasonable times. In this paper we first break down the energy consumption for the components of a typical sensor node, and discuss the main directions to energy conservation in WSNs. Then, we present a systematic and comprehensive taxonomy of the energy conservation schemes, which are subsequently discussed in depth. Special attention has been devoted to promising solutions which have not yet obtained a wide attention in the literature, such as techniques for energy efficient data acquisition. Finally we conclude the paper with insights for research directions about energy conservation in WSNs.

2,546 citations

Journal ArticleDOI
01 Mar 2005
TL;DR: This work evaluates issues in the context of TinyDB, a distributed query processor for smart sensor devices, and shows how acquisitional techniques can provide significant reductions in power consumption on the authors' sensor devices.
Abstract: We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs of acquiring data, we are able to significantly reduce power consumption over traditional passive systems that assume the a priori existence of data. We discuss simple extensions to SQL for controlling data acquisition, and show how acquisitional issues influence query optimization, dissemination, and execution. We evaluate these issues in the context of TinyDB, a distributed query processor for smart sensor devices, and show how acquisitional techniques can provide significant reductions in power consumption on our sensor devices.

2,065 citations