scispace - formally typeset
Search or ask a question
Author

Amparo Chiralt

Bio: Amparo Chiralt is an academic researcher from Polytechnic University of Valencia. The author has contributed to research in topics: Osmotic dehydration & Starch. The author has an hindex of 78, co-authored 298 publications receiving 18378 citations. Previous affiliations of Amparo Chiralt include Polytechnic University of Puerto Rico.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors acknowledge the financial support from the Spanish Ministerio de Educación y Ciencia through Project AGL2010-20694, from Universidad Politecnica de Valencia through Project PAID-06-11-2013 and from Conselleria de Empresa, Universidad and Ciencias (Project GV/2013/152).
Abstract: The authors acknowledge the financial support from the Spanish Ministerio de Educacion y Ciencia through Project AGL2010-20694, from Universidad Politecnica de Valencia through Project PAID-06-11-2013 and from Conselleria de Empresa, Universidad y Ciencia (Project GV/2013/152).

599 citations

Journal ArticleDOI
TL;DR: In this paper, the physicochemical properties of the starch matrices, the film formation methods, and physicochemical property of starch films have been analyzed and the influences of different components added in casting methods and thermoplastic processes have been also analyzed.
Abstract: Mainly due to environmental aims, petroleum-based plastics are being replaced by natural polymers. In the last decades, starch has been evaluated in its film-forming ability for applications in the food packaging area. Characteristics of the starch film matrices, the film formation methods, and physicochemical properties of the starch films are reviewed in this paper. The influences of different components added in casting methods and thermoplastic processes have been also analyzed. Comparison of mechanical properties of newly prepared starch films and stored films reveals that the recrystallization phenomenon made the films more rigid and less stretchable. These effects can be inhibited by adding other polymers to the starch matrix. Other approaches to improve the starch films’ properties are the reinforcement by adding organic or inorganic fillers to the starch matrix as well as the addition of functional compounds. In this way starch films have improved mechanical and barrier properties and can act as a bioactive packaging. Physicochemical properties of the starch films showed a great variability depending on the compounds added to the matrix and the processing method. Nevertheless, dry methods are more recommendable for film manufacturing because of the greater feasibility of the industrial process. In this sense, a better understanding of the nano and microstructural changes occurring in the matrices and their impact on the film properties is required.

446 citations

Journal ArticleDOI
TL;DR: The new generation of edible coatings is being especially designed to allow the incorporation and/or controlled release of antioxidants, vitamins, nutraceuticals, and natural antimicrobial agents by means of the application of promising technologies such as nanoencapsulation and the layer-by-layer assembly.
Abstract: The development of new edible coatings with improved functionality and performance for fresh and minimally processed fruits is one of the challenges of the post harvest industry. In the past few years, research efforts have focused on the design of new eco-friendly coatings based on biodegradable polymers, which not only reduce the requirements of packaging but also lead to the conversion of by-products of the food industry into value added film-forming components. This work reviews the different coating formulations and applications available at present, as well as the main results of the most recent investigations carried out on the topic. Traditionally, edible coatings have been used as a barrier to minimize water loss and delay the natural senescence of coated fruits through selective permeability to gases. However, the new generation of edible coatings is being especially designed to allow the incorporation and/or controlled release of antioxidants, vitamins, nutraceuticals, and natural antimicrobial agents by means of the application of promising technologies such as nanoencapsulation and the layer-by-layer assembly.

396 citations

Journal ArticleDOI
TL;DR: In this paper, the use of essential oils as natural antimicrobial and antioxidant compounds to obtain bioactive films or coatings is discussed, and the advantages and limitations are also reviewed.
Abstract: Antimicrobial and antioxidant properties of essential oils have previously been extensively reviewed. The mechanisms of action of essential oils have not been clearly identified but they seem to be related with their hydrophobic nature. Applying these natural compounds in the food industry could be a potential alternative, but its application costs and other problems, such as their intense aroma and potential toxicity, limit their use in the area of food preservation. An interesting strategy to reduce doses of essential oils while maintaining their effectiveness could be the incorporation of these natural compounds into edible/biodegradable films. This review discusses the use of essential oils as natural antimicrobial and antioxidant compounds to obtain bioactive films or coatings. The advantages and limitations are also reviewed.

376 citations

Journal ArticleDOI
TL;DR: In this paper, chitosan (CH) was blended with poly vinyl alcohol (PVA) in different compositions to obtain biodegradable films, which were characterized for their thermal behavior, structural, mechanical and barrier properties as well as antimicrobial activity.

369 citations


Cited by
More filters
Reference EntryDOI
31 Oct 2001
TL;DR: The American Society for Testing and Materials (ASTM) as mentioned in this paper is an independent organization devoted to the development of standards for testing and materials, and is a member of IEEE 802.11.
Abstract: The American Society for Testing and Materials (ASTM) is an independent organization devoted to the development of standards.

3,792 citations

Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

Journal ArticleDOI
TL;DR: An overview of current knowledge about the antibacterial properties and antibacterial mode of action of essential oils and their constituents is provided, and research avenues that can facilitate implementation of essential oil constituents as natural preservatives in foods are identified.
Abstract: Essential oils are aromatic and volatile liquids extracted from plants. The chemicals in essential oils are secondary metabolites, which play an important role in plant defense as they often possess antimicrobial properties. The interest in essential oils and their application in food preservation has been amplified in recent years by an increasingly negative consumer perception of synthetic preservatives. Furthermore, food-borne diseases are a growing public health problem worldwide, calling for more effective preservation strategies. The antibacterial properties of essential oils and their constituents have been documented extensively. Pioneering work has also elucidated the mode of action of a few essential oil constituents, but detailed knowledge about most of the compounds’ mode of action is still lacking. This knowledge is particularly important to predict their effect on different microorganisms, how they interact with food matrix components, and how they work in combination with other antimicrobial compounds. The main obstacle for using essential oil constituents as food preservatives is that they are most often not potent enough as single components, and they cause negative organoleptic effects when added in sufficient amounts to provide an antimicrobial effect. Exploiting synergies between several compounds has been suggested as a solution to this problem. However, little is known about which interactions lead to synergistic, additive, or antagonistic effects. Such knowledge could contribute to design of new and more potent antimicrobial blends, and to understand the interplay between the constituents of crude essential oils. The purpose of this review is to provide an overview of current knowledge about the antibacterial properties and antibacterial mode of action of essential oils and their constituents, and to identify research avenues that can facilitate implementation of essential oils as natural preservatives in foods.

1,509 citations

Journal ArticleDOI
TL;DR: The present review aims to highlight various preparative methods and antimicrobial activity including the mechanism of the antimicrobial action of chitosan based films including the optimisation of the biocidic properties of these so called biocomposites films and role of biocatalysts in improvement of quality and shelf life of foods.

1,237 citations

Proceedings Article
27 Aug 1984

954 citations