scispace - formally typeset
Search or ask a question
Author

Amy Beck

Other affiliations: University of South Florida
Bio: Amy Beck is an academic researcher from Roswell Park Cancer Institute. The author has contributed to research in topics: Ovarian cancer & Cancer. The author has an hindex of 21, co-authored 30 publications receiving 2479 citations. Previous affiliations of Amy Beck include University of South Florida.

Papers
More filters
Journal ArticleDOI
TL;DR: Dual blockade of LAG-3 and PD-1 during T-cell priming efficiently augmented proliferation and cytokine production by NY-ESO-1–specific CD8+ T cells, indicating that antitumor function of NY-eso-1-specific CD 8+ T Cells could potentially be improved by therapeutic targeting of these inhibitory receptors.
Abstract: NY-ESO-1 is a “cancer-testis” antigen frequently expressed in epithelial ovarian cancer (EOC) and is among the most immunogenic tumor antigens defined to date. In an effort to understand in vivo tolerance mechanisms, we assessed the phenotype and function of NY-ESO-1–specific CD8+ T cells derived from peripheral blood lymphocytes (PBLs), tumor-infiltrating lymphocytes (TILs), and tumor-associated lymphocytes (TALs) of EOC patients with NY-ESO-1-expressing tumors, with or without humoral immunity to NY-ESO-1. Whereas NY-ESO-1–specific CD8+ T cells were readily detectable ex vivo with tetramers in TILs and TALs of seropositive patients, they were only detectable in PBLs following in vitro stimulation. Compared with PBLs, tumor-derived NY-ESO-1–specific CD8+ T cells demonstrated impaired effector function, preferential usage of dominant T-cell receptor, and enriched coexpression of inhibitory molecules LAG-3 and PD-1. Expression of LAG-3 and PD-1 on CD8+ T cells was up-regulated by IL-10, IL-6 (cytokines found in tumor ascites), and tumor-derived antigen-presenting cells. Functionally, CD8+LAG-3+PD-1+ T cells were more impaired in IFN-γ/TNF-α production compared with LAG-3+PD-1− or LAG-3−PD-1− subsets. Dual blockade of LAG-3 and PD-1 during T-cell priming efficiently augmented proliferation and cytokine production by NY-ESO-1–specific CD8+ T cells, indicating that antitumor function of NY-ESO-1-specific CD8+ T cells could potentially be improved by therapeutic targeting of these inhibitory receptors.

719 citations

Journal ArticleDOI
07 Jan 2014-PLOS ONE
TL;DR: In insight into the relationship between tumor dissemination and metabolic attributes of human cancer stem cells, spheroid cells were found to be enriched for cells with cancer stem cell-like characteristics and contributed to tumor generation, progression and chemotherapy resistance.
Abstract: Cells with sphere forming capacity, spheroid cells, are present in the malignant ascites of patients with epithelial ovarian cancer (EOC) and represent a significant impediment to efficacious treatment due to their putative role in progression, metastasis and chemotherapy resistance. The exact mechanisms that underlie EOC metastasis and drug resistance are not clear. Understanding the biology of sphere forming cells may contribute to the identification of novel therapeutic opportunities for metastatic EOC. Here we generated spheroid cells from human ovarian cancer cell lines and primary ovarian cancer. Xenoengraftment of as few as 2000 dissociated spheroid cells into immune-deficient mice allowed full recapitulation of the original tumor, whereas >105 parent tumor cells remained non-tumorigenic. The spheroid cells were found to be enriched for cells with cancer stem cell-like characteristics such as upregulation of stem cell genes, self-renewal, high proliferative and differentiation potential, and high aldehyde dehydrogenase (ALDH) activity. Furthermore, spheroid cells were more aggressive in growth, migration, invasion, scratch recovery, clonogenic survival, anchorage-independent growth, and more resistant to chemotherapy in vitro. 13C-glucose metabolic studies revealed that spheroid cells route glucose predominantly to anaerobic glycolysis and pentose cycle to the detriment of re-routing glucose for anabolic purposes. These metabolic properties of sphere forming cells appear to confer increased resistance to apoptosis and contribute to more aggressive tumor growth. Collectively, we demonstrated that spheroid cells with cancer stem cell-like characteristics contributed to tumor generation, progression and chemotherapy resistance. This study provides insight into the relationship between tumor dissemination and metabolic attributes of human cancer stem cells and has clinical implications for cancer therapy.

305 citations

Journal Article
TL;DR: Examination of expression of NY-ESO-1 and LAGE-1 CT antigens by reverse transcription-PCR and immunohistochemistry in epithelial ovarian cancer (EOC) patients indicates that NY- ESO- 1 and Lage-1 are attractive targets for antigen-specific immunotherapy in EOC.
Abstract: Cancer-testis (CT) antigens are expressed in a variety of cancers, but not in normal adult tissues, except for germ cells of the testis, and hence appear to be ideal targets for immunotherapy. In an effort to examine the potential of NY-ESO-1 and LAGE-1 CT antigens for immunotherapy in epithelial ovarian cancer (EOC), we examined the expression of these antigens by reverse transcription-PCR (RT-PCR) and immunohistochemistry (IHC) in a large panel of EOC tissues and cell lines. Sera from a subgroup of the patients were tested for NY-ESO-1/LAGE-1 antibody by ELISA. The data indicated that four ovarian cancer cell lines were positive for one or both CT antigens. Expression of NY-ESO-1 in EOC was demonstrated by RT-PCR and/or IHC in 82 of 190 (43%) specimens. NY-ESO-1 expression by IHC ranged from homogeneous to heterogeneous pattern. LAGE-1 mRNA expression was present in 22 of 107 (21%) tumor tissues. Overall, the expression of either NY-ESO-1 or LAGE-1 mRNA was present in 42 of 107 (40%) EOC specimens and coexpression of both antigens was demonstrated in 11% of specimens. Antibody to NY-ESO-1/LAGE-1 was present in 11 of 37 (30%) patients whose tumors expressed either NY-ESO-1 or LAGE-1. Detectable antibodies were present for up to 3 years after initial diagnosis. Although there was no statistically significant relation between expression of NY-ESO-1/LAGE-1 antigen and survival, the data showed aberrant expression of NY-ESO-1 and LAGE-1 by IHC/RT-PCR in a significant proportion of EOC patients. These findings indicate that NY-ESO-1 and LAGE-1 are attractive targets for antigen-specific immunotherapy in EOC.

239 citations

Journal ArticleDOI
TL;DR: Preliminary evidence of clinically meaningful benefit for diversified prime and boost recombinant pox-viral-based vaccines in melanoma and ovarian cancer is provided and support further evaluation of this approach in these patient populations are supported.
Abstract: Recombinant poxviruses (vaccinia and fowlpox) expressing tumor-associated antigens are currently being evaluated in clinical trials as cancer vaccines to induce tumor-specific immune responses that will improve clinical outcome. To test whether a diversified prime and boost regimen targeting NY-ESO-1 will result in clinical benefit, we conducted two parallel phase II clinical trials of recombinant vaccinia-NY-ESO-1 (rV-NY-ESO-1), followed by booster vaccinations with recombinant fowlpox-NY-ESO-1 (rF-NY-ESO-1) in 25 melanoma and 22 epithelial ovarian cancer (EOC) patients with advanced disease who were at high risk for recurrence/progression. Integrated NY-ESO-1-specific antibody and CD4+ and CD8+ T cells were induced in a high proportion of melanoma and EOC patients. In melanoma patients, objective response rate [complete and partial response (CR+PR)] was 14%, mixed response was 5%, and disease stabilization was 52%, amounting to a clinical benefit rate (CBR) of 72% in melanoma patients. The median PFS in the melanoma patients was 9 mo (range, 0–84 mo) and the median OS was 48 mo (range, 3–106 mo). In EOC patients, the median PFS was 21 mo (95% CI, 16–29 mo), and median OS was 48 mo (CI, not estimable). CD8+ T cells derived from vaccinated patients were shown to lyse NY-ESO-1-expressing tumor targets. These data provide preliminary evidence of clinically meaningful benefit for diversified prime and boost recombinant pox-viral-based vaccines in melanoma and ovarian cancer and support further evaluation of this approach in these patient populations.

172 citations

Journal ArticleDOI
TL;DR: It is shown that the DNA methyltransferase inhibitor decitabine augmented the efficacy of the NY-ESO-1 vaccine and doxorubicin treatment of patients with refractory epithelial ovarian cancer, demonstrating the potential of the combined chemo-immunotherapy regimen.
Abstract: The cancer-testis/cancer-germline antigen NY-ESO-1 is a vaccine target in epithelial ovarian cancer (EOC), but its limited expression is a barrier to vaccine efficacy. As NY-ESO-1 is regulated by DNA methylation, we hypothesized that DNA methyltransferase (DNMT) inhibitors may augment NY-ESO-1 vaccine therapy. In agreement, global DNA hypomethylation in EOC was associated with the presence of circulating antibodies to NY-ESO-1. Pre-clinical studies using EOC cell lines showed that decitabine treatment enhanced both NY-ESO-1 expression and NY-ESO-1-specific CTL-mediated responses. Based on these observations, we performed a phase I dose-escalation trial of decitabine, as an addition to NY-ESO-1 vaccine and doxorubicin liposome (doxorubicin) chemotherapy, in 12 patients with relapsed EOC. The regimen was safe, with limited and clinically manageable toxicities. Both global and promoter-specific DNA hypomethylation occurred in blood and circulating DNAs, the latter of which may reflect tumor cell responses. Increased NY-ESO-1 serum antibodies and T cell responses were observed in the majority of patients, and antibody spreading to additional tumor antigens was also observed. Finally, disease stabilization or partial clinical response occurred in 6/10 evaluable patients. Based on these encouraging results, evaluation of similar combinatorial chemo-immunotherapy regimens in EOC and other tumor types is warranted.

168 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
Abstract: Immune checkpoints refer to the plethora of inhibitory pathways that are crucial to maintaining self-tolerance. Tumour cells induce immune checkpoints to evade immunosurveillance. This Review discusses the progress in targeting immune checkpoints, the considerations for combinatorial therapy and the potential for additional immune-checkpoint targets.

10,602 citations

Journal ArticleDOI
TL;DR: The immune system recognizes and is poised to eliminate cancer but is held in check by inhibitory receptors and ligands, so drugs interrupting immune checkpoints, such as anti-CTLA-4, anti-PD-1, and others in early development, can unleash anti-tumor immunity and mediate durable cancer regressions.

3,097 citations

Journal ArticleDOI
TL;DR: Advances in the molecular delineation of T cell exhaustion are clarifying the underlying causes of this state of differentiation and also suggest promising therapeutic opportunities.
Abstract: T cell exhaustion is a state of T cell dysfunction that arises during many chronic infections and cancer. It is defined by poor effector function, sustained expression of inhibitory receptors and a transcriptional state distinct from that of functional effector or memory T cells. Exhaustion prevents optimal control of infection and tumors. Recently, a clearer picture of the functional and phenotypic profile of exhausted T cells has emerged and T cell exhaustion has been defined in many experimental and clinical settings. Although the pathways involved remain to be fully defined, advances in the molecular delineation of T cell exhaustion are clarifying the underlying causes of this state of differentiation and also suggest promising therapeutic opportunities.

3,096 citations

Journal ArticleDOI
TL;DR: Recent advances that provide a clearer molecular understanding of T cell exhaustion are reviewed and reveal new therapeutic targets for persisting infections and cancer.
Abstract: In chronic infections and cancer, T cells are exposed to persistent antigen and/or inflammatory signals. This scenario is often associated with the deterioration of T cell function: a state called 'exhaustion'. Exhausted T cells lose robust effector functions, express multiple inhibitory receptors and are defined by an altered transcriptional programme. T cell exhaustion is often associated with inefficient control of persisting infections and tumours, but revitalization of exhausted T cells can reinvigorate immunity. Here, we review recent advances that provide a clearer molecular understanding of T cell exhaustion and reveal new therapeutic targets for persisting infections and cancer.

2,825 citations

Journal ArticleDOI
TL;DR: It is concluded that intraepithelial CD8+ TILs and a high CD8-/Treg ratio are associated with favorable prognosis in epithelial ovarian cancer.
Abstract: In a recent report, [Zhang et al. (2003) N. Engl. J. Med. 348, 203–213], the presence of CD3+ tumor-infiltrating lymphocytes (TILs) was found to correlate with improved survival in epithelial ovarian cancer. We performed immunohistochemical analysis for TILs and cancer testis antigens in 117 cases of epithelial ovarian cancer. The interrelationship between subpopulations of TILs and expression of cancer testis antigens was investigated, as well as between TILs and overall survival. The median follow-up of the patients was 31 months. Patients with higher frequencies of intraepithelial CD8+ T cells demonstrated improved survival compared with patients with lower frequencies [median = 55 versus 26 months; hazard ratio = 0.33; confidence interval (C.I.) = 0.18–0.60; P = 0.0003]. No association was found for CD3+ TILs or other subtypes of intraepithelial or stromal TILs. However, the subgroups with high versus low intraepithelial CD8+/CD4+ TIL ratios had median survival of 74 and 25 months, respectively (hazard ratio = 0.30; C.I. = 0.16–0.55; P = 0.0001). These results indicate that CD4+ TILs influence the beneficial effects of CD8+ TIL. This unfavorable effect of CD4+ T cells on prognosis was found to be due to CD25+forkhead box P3 (FOXP3)+ regulatory T cells (Treg; suppressor T cells), as indicated by survival of patients with high versus low CD8+/Treg ratios (median = 58 versus 23 months; hazard ratio = 0.31; C.I. = 0.17–0.58; P = 0.0002). The favorable prognostic effect of intraepithelial CD8+ TILs did not correlate with concurrent expression of NY-ESO-1 or MAGE antigens. We conclude that intraepithelial CD8+ TILs and a high CD8+/Treg ratio are associated with favorable prognosis in epithelial ovarian cancer.

2,189 citations