scispace - formally typeset
Search or ask a question
Author

Amy Cohen

Bio: Amy Cohen is an academic researcher from University of Sydney. The author has contributed to research in topics: Plasmodium berghei & Cerebral Malaria. The author has an hindex of 6, co-authored 7 publications receiving 98 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work defines, for the first time, the protein cargo of MP during experimental cerebral malaria (ECM), and demonstrates that MP protein cargo represents a novel ECM pathogenic trait to consider in the understanding of CM pathogenesis.
Abstract: Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection responsible for thousands of deaths in children in sub-Saharan Africa. CM pathogenesis remains incompletely understood but a number of effectors have been proposed, including plasma microparticles (MP). MP numbers are increased in CM patients' circulation and, in the mouse model, they can be localised within inflamed vessels, suggesting their involvement in vascular damage. In the present work we define, for the first time, the protein cargo of MP during experimental cerebral malaria (ECM) with the overarching hypothesis that this characterisation could help understand CM pathogenesis. Using qualitative and quantitative high-throughput proteomics we compared MP proteins from non-infected and P. berghei ANKA-infected mice. More than 360 proteins were identified, 60 of which were differentially abundant, as determined by quantitative comparison using TMTTM isobaric labelling. Network analyses showed that ECM MP carry proteins implicated in molecular mechanisms relevant to CM pathogenesis, including endothelial activation. Among these proteins, the strict association of carbonic anhydrase I and S100A8 with ECM was verified by western blot on MP from DBA/1 and C57BL/6 mice. These results demonstrate that MP protein cargo represents a novel ECM pathogenic trait to consider in the understanding of CM pathogenesis.

29 citations

Journal ArticleDOI
TL;DR: The data implies that, at least in the mouse model, miRNA may play a regulatory role in CM pathogenesis, and suggests that these miRNA, through their regulation of downstream targets, may be vitally involved in the neurological syndrome.
Abstract: Cerebral malaria (CM) is the most severe manifestation of infection with Plasmodium, however its pathogenesis is still not completely understood. microRNA (miRNA) have been an area of focus in infectious disease research, due to their ability to affect normal biological processes, and have been shown to play roles in various viral, bacterial and parasitic infections, including malaria. The expression of miRNA was studied following infection of CBA mice with either Plasmodium berghei ANKA (causing CM), or Plasmodium yoelii (causing severe but non-cerebral malaria (NCM)). Using microarray analysis, miRNA expression was compared in the brains of non-infected (NI), NCM and CM mice. Six miRNA were significantly dysregulated between NCM and CM mice, and four of these, miR-19a-3p, miR-19b-3p, miR-142-3p and miR-223-3p, were further validated by qPCR assays. These miRNA are significantly involved in several pathways relevant to CM, including the TGF-β and endocytosis pathways. Dysregulation of these miRNA during CM specifically compared with NCM suggests that these miRNA, through their regulation of downstream targets, may be vitally involved in the neurological syndrome. Our data implies that, at least in the mouse model, miRNA may play a regulatory role in CM pathogenesis.

25 citations

Journal ArticleDOI
TL;DR: The change in abundance of miRNA was studied following infection of CBA mice with Plasmodium berghei ANKA strain, and Plas modium yoelii, which causes severe malaria without cerebral complications, termed non-CM, suggesting that, in the mouse model at least, miRNA may have a regulatory role in the pathogenesis of severe malaria.
Abstract: Cerebral malaria (CM) is a fatal complication of Plasmodium infection, mostly affecting children under the age of five in the sub-Saharan African region. CM pathogenesis remains incompletely understood, although sequestered infected red blood cells, inflammatory cells aggregating in the cerebral blood vessels, and the microvesicles (MV) that they release in the circulation, have been implicated. Plasma MV numbers increase in CM patients and in the murine model, where blocking their release, genetically or pharmacologically, protects against brain pathology, suggesting a role of MV in CM neuropathogenesis. In this work, the microRNA (miRNA) cargo of MV is defined for the first time during experimental CM with the overarching hypothesis that this characterization could help understand CM pathogenesis. The change in abundance of miRNA was studied following infection of CBA mice with Plasmodium berghei ANKA strain (causing experimental CM), and Plasmodium yoelii, which causes severe malaria without cerebral complications, termed non-CM (NCM). miRNA expression was analyzed using microarrays to compare MV from healthy (NI) and CM mice, yielding several miRNA of interest. The differential expression profiles of these selected miRNA (miR-146a, miR-150, miR-193b, miR-205, miR-215, miR-467a, and miR-486) were analyzed in mouse MV, MV-free plasma, and brain tissue by quantitative reverse transcription PCR (RT-qPCR). Two miRNA—miR-146a and miR-193b—were confirmed as differentially abundant in MV from CM mice, compared with NCM and NI mice. These miRNA have been shown to play various roles in inflammation, and their dysregulation during CM may be critical for triggering the neurological syndrome via regulation of their potential downstream targets. These data suggest that, in the mouse model at least, miRNA may have a regulatory role in the pathogenesis of severe malaria.

22 citations

Journal ArticleDOI
TL;DR: Microvesicles and exosomes are implicated in cerebral malaria pathogenesis, in the modulation of host immunity to Plasmodium, and in cell-cell communication and blocking their production is protective in models of cerebral malaria.

22 citations

Journal ArticleDOI
TL;DR: The role of microRNA in the pathogenesis of severe malaria remains incompletely understood, hindering our ability to treat this disease as discussed by the authors, and the role of small, non-coding RNAs play in the progression, pathogenesis, and resistance to, malaria.
Abstract: Malaria is a mosquito-borne infectious disease caused by parasitic protozoa of the genus Plasmodium. It remains a major problem affecting humans today, especially children. However, the pathogenesis of malaria, especially severe malaria, remains incompletely understood, hindering our ability to treat this disease. Of recent interest is the role that small, non-coding RNAs play in the progression, pathogenesis of, and resistance to, malaria. Independent studies have now revealed the presence of microRNA (miRNA) in the malaria parasite, vector, and host, though these studies are relatively few. Here, we review these studies, focusing on the roles specific miRNA have in the disease, and how they may be harnessed for therapeutic purposes.

20 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Current knowledge on the contribution of cytokines and chemokines to the pathogenesis of cerebral malaria is highlighted with particular emphasis on their roles in endothelial activation and leukocyte recruitment, as well as their implication in the progression to blood-brain barrier permeability and neuroinflammation, in both human cerebral malaria and in the murine experimental cerebral malaria model.
Abstract: Cerebral malaria is among the major causes of malaria-associated mortality and effective adjunctive therapeutic strategies are currently lacking. Central pathophysiological processes involved in the development of cerebral malaria include an imbalance of pro- and anti-inflammatory responses to Plasmodium infection, endothelial cell activation, and loss of blood-brain barrier integrity. However, the sequence of events, which initiates these pathophysiological processes as well as the contribution of their complex interplay to the development of cerebral malaria remain incompletely understood. Several cytokines and chemokines have repeatedly been associated with cerebral malaria severity. Increased levels of these inflammatory mediators could account for the sequestration of leukocytes in the cerebral microvasculature present during cerebral malaria, thereby contributing to an amplification of local inflammation and promoting cerebral malaria pathogenesis. Herein, we highlight the current knowledge on the contribution of cytokines and chemokines to the pathogenesis of cerebral malaria with particular emphasis on their roles in endothelial activation and leukocyte recruitment, as well as their implication in the progression to blood-brain barrier permeability and neuroinflammation, in both human cerebral malaria and in the murine experimental cerebral malaria model. A better molecular understanding of these processes could provide the basis for evidence-based development of adjunct therapies and the definition of diagnostic markers of disease progression.

159 citations

Journal ArticleDOI
TL;DR: Extracellular vesicles (EVs) are blebs of either plasma membrane or intracellular membranes carrying a cargo of proteins, nucleic acids, and lipids.
Abstract: Extracellular vesicles (EVs) are blebs of either plasma membrane or intracellular membranes carrying a cargo of proteins, nucleic acids, and lipids. EVs are produced by eukaryotic cells both under physiological and pathological conditions. Genetic and environmental factors (diet, stress, etc.) affecting EV cargo, regulating EV release, and consequences on immunity will be covered. EVs are found in virtually all body fluids such as plasma, saliva, amniotic fluid, and breast milk, suggesting key roles in immune development and function at different life stages from in utero to aging. These will be reviewed here. Under pathological conditions, plasma EV levels are increased and exacerbate immune activation and inflammatory reaction. Sources of EV, cells targeted, and consequences on immune function and disease development will be discussed. Both pathogenic and commensal bacteria release EV, which are classified as outer membrane vesicles when released by Gram-negative bacteria or as membrane vesicles when released by Gram-positive bacteria. Bacteria derived EVs can affect host immunity with pathogenic bacteria derived EVs having pro-inflammatory effects of host immune cells while probiotic derived EVs mostly shape the immune response towards tolerance.

120 citations

Journal ArticleDOI
TL;DR: The benefits that miRNA biomarkers offer to the diagnosis, management, and treatment of infectious diseases are outlined and new and emerging miRNA detection platforms are discussed, with a focus on rapid, point-of-care testing, to evaluate the benefits and obstacles of mi RNA biomarkers for infectious disease.
Abstract: In the pursuit of improved diagnostic tests for infectious diseases, several classes of molecules have been scrutinized as prospective biomarkers. Small (18-22 nucleotide), non-coding RNA transcripts called microRNAs (miRNAs) have emerged as promising candidates with extensive diagnostic potential, due to their role in numerous diseases, previously established methods for quantitation and their stability within biofluids. Despite efforts to identify, characterize and apply miRNA signatures as diagnostic markers in a range of non-infectious diseases, their application in infectious disease has advanced relatively slowly. Here, we outline the benefits that miRNA biomarkers offer to the diagnosis, management, and treatment of infectious diseases. Investigation of these novel biomarkers could advance the use of personalized medicine in infectious disease treatment, which raises important considerations for validating their use as diagnostic or prognostic markers. Finally, we discuss new and emerging miRNA detection platforms, with a focus on rapid, point-of-care testing, to evaluate the benefits and obstacles of miRNA biomarkers for infectious disease.

104 citations

23 Feb 2016
TL;DR: In this article, the authors compared the pathogenesis of acute respiratory distress syndrome (MA-ARDS) in patients and in different murine models, including recent models without cerebral involvement, and summarized the roles of different leukocyte subclasses, adhesion molecules, cytokines, and chemokines.
Abstract: Malaria-associated acute respiratory distress syndrome (MA-ARDS) is an increasingly reported, often lethal, and incompletely understood complication of malaria. We discuss and compare the pathogenesis of MA-ARDS in patients and in different murine models, including recent models without cerebral involvement, and summarize the roles of different leukocyte subclasses, adhesion molecules, cytokines, and chemokines. In patients as well as in mice, severe edema and impaired gas exchange are associated with abundant inflammatory infiltrates consisting of mainly mononuclear cells and parasite sequestration, and the pathogenesis appears different from cerebral malaria (CM). Experimental anti-inflammatory interventions are successful in mice and remain to be validated in patients.

68 citations

Journal ArticleDOI
TL;DR: The presence of Plasmodium RNAs, in EVs suggests that they may be used as biomarker to track and detect disease, and a role in cellular communication is possible since the RNAs were transferred to endothelial cells.
Abstract: The parasite Plasmodium falciparum causes the most severe form of malaria. Cell communication between parasites is an important mechanism to control population density and differentiation. The infected red blood cells (iRBCs) release small extracellular vesicles (EVs) that transfer cargoes between cells. The EVs synchronize the differentiation of the asexual parasites into gametocytes to initiate the transmission to the mosquito. Beside their role in parasite communication, EVs regulate vascular function. So far, the exact cargoes responsible for cellular communication remain unknown. We isolated EVs from cultured iRBCs to determine their small RNA content. We identified several types of human and plasmodial regulatory RNAs. While the miRNAs and tRNA-derived fragments were the most abundant human RNAs, we also found Y-RNAs, vault RNAs, snoRNAs and piRNAs. Interestingly, we found about 120 plasmodial RNAs, including mRNAs coding for exported proteins and proteins involved in drug resistance, as well as non-coding RNAs, such as rRNAs, small nuclear (snRNAs) and tRNAs. These data show, that iRBC-EVs carry small regulatory RNAs. A role in cellular communication is possible since the RNAs were transferred to endothelial cells. Furthermore, the presence of Plasmodium RNAs, in EVs suggests that they may be used as biomarker to track and detect disease.

53 citations