scispace - formally typeset
Search or ask a question
Author

Ana Amador

Bio: Ana Amador is an academic researcher from University of Buenos Aires. The author has contributed to research in topics: Zebra finch & Vocal tract. The author has an hindex of 10, co-authored 23 publications receiving 491 citations. Previous affiliations of Ana Amador include University of Chicago & National Scientific and Technical Research Council.

Papers
More filters
Journal ArticleDOI
07 Mar 2013-Nature
TL;DR: The HVC precisely encodes vocal motor output through activity at the times of extreme points of movement trajectories, and it is proposed that the sequential activity of HVC neurons is used as a 'forward' model, representing the sequence of gestures in song to make predictions on expected behaviour and evaluate feedback.
Abstract: Quantitative biomechanical models can identify control parameters that are used during movements, and movement parameters that are encoded by premotor neurons. We fit a mathematical dynamical systems model including subsyringeal pressure, syringeal biomechanics and upper-vocal-tract filtering to the songs of zebra finches. This reduces the dimensionality of singing dynamics, described as trajectories (motor 'gestures') in a space of syringeal pressure and tension. Here we assess model performance by characterizing the auditory response 'replay' of song premotor HVC neurons to the presentation of song variants in sleeping birds, and by examining HVC activity in singing birds. HVC projection neurons were excited and interneurons were suppressed within a few milliseconds of the extreme time points of the gesture trajectories. Thus, the HVC precisely encodes vocal motor output through activity at the times of extreme points of movement trajectories. We propose that the sequential activity of HVC neurons is used as a 'forward' model, representing the sequence of gestures in song to make predictions on expected behaviour and evaluate feedback.

160 citations

Journal ArticleDOI
TL;DR: This work investigates sound production and control of sound frequency in the Great Kiskadee by recording air sac pressure and vocalizations during spontaneously generated song and assumes a nonlinear restitution force for the oscillating membrane folds in a two mass model of sound production to reproduce the frequency modulations of the observed vocalizations.
Abstract: The physiology of sound production in suboscines is poorly investigated. Suboscines are thought to develop song innately unlike the closely related oscines. Comparing phonatory mechanisms might therefore provide interesting insight into the evolution of vocal learning. Here we investigate sound production and control of sound frequency in the Great Kiskadee (Pitangus sulfuratus) by recording air sac pressure and vocalizations during spontaneously generated song. In all the songs and calls recorded, the modulations of the fundamental frequency are highly correlated to air sac pressure. To test whether this relationship reflects frequency control by changing respiratory activity or indicates synchronized vocal control, we denervated the syringeal muscles by bilateral resection of the tracheosyringeal nerve. After denervation, the strong correlation between fundamental frequency and air sac pressure patterns remained unchanged. A single linear regression relates sound frequency to air sac pressure in the intact and denervated birds. This surprising lack of control by syringeal muscles of frequency in Kiskadees, in strong contrast to songbirds, poses the question of how air sac pressure regulates sound frequency. To explore this question theoretically, we assume a nonlinear restitution force for the oscillating membrane folds in a two mass model of sound production. This nonlinear restitution force is essential to reproduce the frequency modulations of the observed vocalizations.

56 citations

Journal ArticleDOI
TL;DR: It is shown in the most widely studied songbird, the zebra finch (Taeniopygia guttata), that the broad range of upper harmonic content in different low-frequency song elements is the fingerprint of the dynamics displayed by its vocal apparatus, which can be captured by a two-dimensional dynamical model.
Abstract: Birdsong is a model system for learned vocal behavior with remarkable parallels to human vocal development and sound production mechanisms. Upper vocal tract filtering plays an important role in human speech, and its importance has recently also been recognized in birdsong. However, the mechanisms of how the avian sound source might contribute to spectral richness are largely unknown. Here we show in the most widely studied songbird, the zebra finch (Taeniopygia guttata), that the broad range of upper harmonic content in different low-frequency song elements is the fingerprint of the dynamics displayed by its vocal apparatus, which can be captured by a two-dimensional dynamical model. As in human speech and singing, the varying harmonic content of birdsong is not only the result of vocal tract filtering but of a varying degree of tonality emerging from the sound source. The spectral content carries a strong signature of the intrinsic dynamics of the sound source.

50 citations

Journal ArticleDOI
TL;DR: Recon reconstructing the physiological parameters that control an avian vocal organ during birdsong production using recorded song and integrating the model with reconstructed parameters leads to the synthesis of highly realistic songs.
Abstract: We reconstruct the physiological parameters that control an avian vocal organ during birdsong production using recorded song. The procedure involves fitting the time dependent parameters of an avian vocal organ model. Computationally, the model is implemented as a dynamical system ruling the behavior of the oscillating labia that modulate the air flow during sound production, together with the equations describing the dynamics of pressure fluctuations in the vocal tract. We tested our procedure for Zebra finch song with, simultaneously recorded physiological parameters: air sac pressure and the electromyographic activity of the left and right ventral syringeal muscles. A comparison of the reconstructed instructions with measured physiological parameters during song shows a high degree of correlation. Integrating the model with reconstructed parameters leads to the synthesis of highly realistic songs.

47 citations

Journal ArticleDOI
TL;DR: This work presents a novel technique for dynamic control of subsyringeal pressure in zebra finches and concludes that, beyond regulating phonation or its absence, regulation of pressure is important for control of fundamental frequencies of vocalizations.
Abstract: In most animals that vocalize, control of fundamental frequency is a key element for effective communication. In humans, subglottal pressure controls vocal intensity but also influences fundamental frequency during phonation. Given the underlying similarities in the biomechanical mechanisms of vocalization in humans and songbirds, songbirds offer an attractive opportunity to study frequency modulation by pressure. Here, we present a novel technique for dynamic control of subsyringeal pressure in zebra finches. By regulating the opening of a custom-built fast valve connected to the air sac system, we achieved partial or total silencing of specific syllables, and could modify syllabic acoustics through more complex manipulations of air sac pressure. We also observed that more nuanced pressure variations over a limited interval during production of a syllable concomitantly affected the frequency of that syllable segment. These results can be explained in terms of a mathematical model for phonation that incorporates a nonlinear description for the vocal source capable of generating the observed frequency modulations induced by pressure variations. We conclude that the observed interaction between pressure and frequency was a feature of the source, not a result of feedback control. Our results indicate that, beyond regulating phonation or its absence, regulation of pressure is important for control of fundamental frequencies of vocalizations. Thus, although there are separate brainstem pathways for syringeal and respiratory control of song production, both can affect airflow and frequency. We hypothesize that the control of pressure and frequency is combined holistically at higher levels of the vocalization pathways.

38 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations

Book ChapterDOI
TL;DR: Avian duetting is an unusual but taxonomically widespread phenomenon, occurring in over 400 species, representing 40% of bird families, and serves multiple functions, including maintaining the year-round territories and partnerships that characterize many duetting species.
Abstract: Avian duetting is an unusual but taxonomically widespread phenomenon, occurring in over 400 species, representing 40% of bird families. Duets vary in form from loosely overlapping songs to highly coordinated duets where paired birds both adjust the timing and type of phrases they sing to fit those of their partner over the course of the duet. Duet coordination therefore signals how attentive an individual is to its partner, both to the partner and to other listeners. While some aspects of duetting are poorly understood, such as its ontogeny and causation (including hormonal and neural bases), it is clear that duetting serves multiple functions, including maintaining the year-round territories and partnerships that characterize many duetting species.

216 citations

Journal ArticleDOI
TL;DR: Behavioral and mechanistic parallels between birdsong and aspects of speech and social communication are highlighted, including insights into mirror neurons, the function of auditory feedback, and genes underlying social communication disorders.
Abstract: Songbirds, long of interest to basic neuroscience, have great potential as a model system for translational neuroscience. Songbirds learn their complex vocal behavior in a manner that exemplifies general processes of perceptual and motor skill learning and, more specifically, resembles human speech learning. Song is subserved by circuitry that is specialized for vocal learning and production but that has strong similarities to mammalian brain pathways. The combination of highly quantifiable behavior and discrete neural substrates facilitates understanding links between brain and behavior, both in normal states and in disease. Here we highlight (a) behavioral and mechanistic parallels between birdsong and aspects of speech and social communication, including insights into mirror neurons, the function of auditory feedback, and genes underlying social communication disorders, and (b) contributions of songbirds to understanding cortical-basal ganglia circuit function and dysfunction, including the possibility of harnessing adult neurogenesis for brain repair.

209 citations

Journal ArticleDOI
TL;DR: How a simple biophysical model of the speech production system as an oscillator explains the remarkably stable rhythmic structure of spoken language is outlined.
Abstract: The recognition of spoken language has typically been studied by focusing on either words or their constituent elements (for example, low-level features or phonemes). More recently, the ‘temporal mesoscale’ of speech has been explored, specifically regularities in the envelope of the acoustic signal that correlate with syllabic information and that play a central role in production and perception processes. The temporal structure of speech at this scale is remarkably stable across languages, with a preferred range of rhythmicity of 2– 8 Hz. Importantly, this rhythmicity is required by the processes underlying the construction of intelligible speech. A lot of current work focuses on audio-motor interactions in speech, highlighting behavioural and neural evidence that demonstrates how properties of perceptual and motor systems, and their relation, can underlie the mesoscale speech rhythms. The data invite the hypothesis that the speech motor cortex is best modelled as a neural oscillator, a conjecture that aligns well with current proposals highlighting the fundamental role of neural oscillations in perception and cognition. The findings also show motor theories (of speech) in a different light, placing new mechanistic constraints on accounts of the action–perception interface. Syllables play a central role in speech production and perception. In this Review, Poeppel and Assaneo outline how a simple biophysical model of the speech production system as an oscillator explains the remarkably stable rhythmic structure of spoken language.

201 citations

Journal ArticleDOI
TL;DR: A growing number of studies ask whether and how bird songs vary between areas with low versus high levels of anthropogenic noise as discussed by the authors and find that birds are seen to sing at higher frequencies in urban versus rural populations, presumably because of selection for higher-pitched songs in the face of low-frequency urban noise.

196 citations