scispace - formally typeset
Search or ask a question
Author

Ana Barac

Bio: Ana Barac is an academic researcher from Georgetown University. The author has contributed to research in topics: Breast cancer & Cancer. The author has an hindex of 30, co-authored 126 publications receiving 5347 citations. Previous affiliations of Ana Barac include MedStar Georgetown University Hospital & MedStar Washington Hospital Center.


Papers
More filters
Journal ArticleDOI
TL;DR: The noninvasive evaluation of LVEF has gained importance, and notwithstanding the limitations of the techniques used for its calculation, has emerged as the most widely used strategy for monitoring the changes in cardiac function, both during and after the administration of potentially car- diotoxic cancer treatment.
Abstract: Cardiac dysfunction resulting from exposure to cancer therapeutics was first recognized in the 1960s, with the widespread introduction of anthracyclines into the oncologic therapeutic armamentarium. Heart failure (HF) associated with anthracyclines was then recognized as an important side effect. As a result, physicians learned to limit their doses to avoid cardiac dysfunction. Several strategies have been used over the past decades to detect it. Two of them evolved over time to be very useful: endomyocardial biopsies and monitoring of left ven- tricular (LV) ejection fraction (LVEF) by cardiac imaging. Examination of endomyocardial biopsies proved to be the most sensitive and spe- cific parameter for the identification of anthracycline-induced LV dysfunction and became the gold standard in the 1970s. However, the interest in endomyocardial biopsy has diminished over time because of the reduction in the cumulative dosages used to treat ma- lignancies, the invasive nature of the procedure, and the remarkable progress made in noninvasive cardiac imaging. The noninvasive evaluation of LVEF has gained importance, and notwithstanding the limitations of the techniques used for its calculation, has emerged as the most widely used strategy for monitoring the changes in cardiac function, both during and after the administration of potentially car- diotoxic cancer treatment.

1,316 citations

Journal ArticleDOI
TL;DR: The non-invasive evaluation of LVEF has gained importance, and notwithstanding the limitations of the techniques used for its calculation, has emerged as the most widely used strategy for monitoring the changes in cardiac function, both during and after the administration of potentially cardiotoxic cancer treatment.
Abstract: ### A. Definition, classification, and mechanisms of toxicity Cardiac dysfunction resulting from exposure to cancer therapeutics was first recognized in the 1960s, with the widespread introduction of anthracyclines into the oncological therapeutic armamentarium.1 Heart failure (HF) associated with anthracyclines was then recognized as an important side effect. As a result, physicians learned to limit their doses to avoid cardiac dysfunction.2 Several strategies have been used over the past decades to detect it. Two of them evolved over time to be very useful: endomyocardial biopsies and monitoring of left ventricular (LV) ejection fraction (LVEF) by cardiac imaging. Examination of endomyocardial biopsies proved to be the most sensitive and specific parameter for the identification of anthracycline-induced LV dysfunction and became the gold standard in the 1970s. However, the interest in endomyocardial biopsy has diminished over time because of the reduction in the cumulative dosages used to treat malignancies, the invasive nature of the procedure, and the remarkable progress made in non-invasive cardiac imaging. The non-invasive evaluation of LVEF has gained importance, and notwithstanding the limitations of the techniques used for its calculation, has emerged as the most widely used strategy for monitoring the changes in cardiac function, both during and after the administration of potentially cardiotoxic cancer treatment.3–5 The timing of LV dysfunction can vary among agents. In the case of anthracyclines, the damage occurs immediately after the exposure;6 for others, the time frame between drug administration and detectable cardiac dysfunction appears to be more variable. Nevertheless, the heart has significant cardiac reserve, and the expression of damage in the form of alterations in systolic or diastolic parameters may not be overt until a substantial amount of cardiac reserve has been exhausted. Thus, cardiac damage may not become apparent until years or even decades after receiving the cardiotoxic treatment. This is particularly applicable to …

920 citations

Journal ArticleDOI
TL;DR: Recommendations for prevention and monitoring of cardiac dysfunction in survivors of adult-onset cancers were developed by an expert panel with multidisciplinary representation using a systematic review of meta-analyses, randomized clinical trials, observational studies, and clinical experience.
Abstract: Purpose Cardiac dysfunction is a serious adverse effect of certain cancer-directed therapies that can interfere with the efficacy of treatment, decrease quality of life, or impact the actual survival of the patient with cancer. The purpose of this effort was to develop recommendations for prevention and monitoring of cardiac dysfunction in survivors of adult-onset cancers. Methods Recommendations were developed by an expert panel with multidisciplinary representation using a systematic review (1996 to 2016) of meta-analyses, randomized clinical trials, observational studies, and clinical experience. Study quality was assessed using established methods, per study design. The guideline recommendations were crafted in part using the Guidelines Into Decision Support methodology. Results A total of 104 studies met eligibility criteria and compose the evidentiary basis for the recommendations. The strength of the recommendations in these guidelines is based on the quality, amount, and consistency of the evidence and the balance between benefits and harms. Recommendations It is important for health care providers to initiate the discussion regarding the potential for cardiac dysfunction in individuals in whom the risk is sufficiently high before beginning therapy. Certain higher risk populations of survivors of cancer may benefit from prevention and screening strategies implemented during cancer-directed therapies. Clinical suspicion for cardiac disease should be high and threshold for cardiac evaluation should be low in any survivor who has received potentially cardiotoxic therapy. For certain higher risk survivors of cancer, routine surveillance with cardiac imaging may be warranted after completion of cancer-directed therapy, so that appropriate interventions can be initiated to halt or even reverse the progression of cardiac dysfunction.

782 citations

Journal ArticleDOI
TL;DR: Common CV toxicities related to cancer therapy are defined, along with suggested strategies for prevention, detection and treatment, and guidance regarding prevention, screening, monitoring and treatment of CV toxicity is provided.

484 citations

Journal ArticleDOI
TL;DR: This document will provide a comprehensive overview of the prevalence of these diseases, shared risk factors, the cardiotoxic effects of therapy, and the prevention and treatment of CVD in breast cancer patients.
Abstract: Cardiovascular disease (CVD) remains the leading cause of mortality in women, yet many people perceive breast cancer to be the number one threat to women’s health. CVD and breast cancer have several overlapping risk factors, such as obesity and smoking. Additionally, current breast cancer treatments can have a negative impact on cardiovascular health (eg, left ventricular dysfunction, accelerated CVD), and for women with pre-existing CVD, this might influence cancer treatment decisions by both the patient and the provider. Improvements in early detection and treatment of breast cancer have led to an increasing number of breast cancer survivors who are at risk of long-term cardiac complications from cancer treatments. For older women, CVD poses a greater mortality threat than breast cancer itself. This is the first scientific statement from the American Heart Association on CVD and breast cancer. This document will provide a comprehensive overview of the prevalence of these diseases, shared risk factors, the cardiotoxic effects of therapy, and the prevention and treatment of CVD in breast cancer patients.

450 citations


Cited by
More filters
01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: ABI is ankle-brachial (blood pressure) index and ABPM is ambulatory blood pressure monitoring as mentioned in this paper ; ACCORD is action to control cardiovascular risk in Diabetes and Vascular disease.
Abstract: ABI : ankle–brachial (blood pressure) index ABPM : ambulatory blood pressure monitoring ACCORD : Action to Control Cardiovascular Risk in Diabetes ACE-I : angiotensin-converting enzyme inhibitor ACS : acute coronary syndromes ADVANCE : Action in Diabetes and Vascular disease: PreterAx

4,352 citations

Journal ArticleDOI
TL;DR: The content of these European Society of Cardiology (ESC) Guidelines has been published for personal and educational use only and no commercial use is authorized.
Abstract: Supplementary Table 9, column 'Edoxaban', row 'eGFR category', '95 mL/min' (page 15). The cell should be coloured green instead of yellow. It should also read "60 mg"instead of "60 mg (use with caution in 'supranormal' renal function)."In the above-indicated cell, a footnote has also been added to state: "Edoxaban should be used in patients with high creatinine clearance only after a careful evaluation of the individual thromboembolic and bleeding risk."Supplementary Table 9, column 'Edoxaban', row 'Dose reduction in selected patients' (page 16). The cell should read "Edoxaban 60 mg reduced to 30 mg once daily if any of the following: creatinine clearance 15-50 mL/min, body weight <60 kg, concomitant use of dronedarone, erythromycin, ciclosporine or ketokonazole"instead of "Edoxaban 60 mg reduced to 30 mg once daily, and edoxaban 30 mg reduced to 15mg once daily, if any of the following: creatinine clearance of 30-50 mL/min, body weight <60 kg, concomitant us of verapamil or quinidine or dronedarone."

4,285 citations

Journal ArticleDOI
TL;DR: Estimating cancer prevalence in the United States using incidence and survival data from the Surveillance, Epidemiology, and End Results cancer registries; vital statistics from the Centers for Disease Control and Prevention's National Center for Health Statistics; and population projections from the US Census Bureau is presented.
Abstract: The number of cancer survivors continues to increase in the United States because of the growth and aging of the population as well as advances in early detection and treatment. To assist the public health community in better serving these individuals, the American Cancer Society and the National Cancer Institute collaborate every 3 years to estimate cancer prevalence in the United States using incidence and survival data from the Surveillance, Epidemiology, and End Results cancer registries; vital statistics from the Centers for Disease Control and Prevention's National Center for Health Statistics; and population projections from the US Census Bureau. Current treatment patterns based on information in the National Cancer Data Base are presented for the most prevalent cancer types. Cancer-related and treatment-related short-term, long-term, and late health effects are also briefly described. More than 16.9 million Americans (8.1 million males and 8.8 million females) with a history of cancer were alive on January 1, 2019; this number is projected to reach more than 22.1 million by January 1, 2030 based on the growth and aging of the population alone. The 3 most prevalent cancers in 2019 are prostate (3,650,030), colon and rectum (776,120), and melanoma of the skin (684,470) among males, and breast (3,861,520), uterine corpus (807,860), and colon and rectum (768,650) among females. More than one-half (56%) of survivors were diagnosed within the past 10 years, and almost two-thirds (64%) are aged 65 years or older. People with a history of cancer have unique medical and psychosocial needs that require proactive assessment and management by follow-up care providers. Although there are growing numbers of tools that can assist patients, caregivers, and clinicians in navigating the various phases of cancer survivorship, further evidence-based resources are needed to optimize care.

2,924 citations