scispace - formally typeset
Search or ask a question
Author

Ana I. Esquifino

Bio: Ana I. Esquifino is an academic researcher from Complutense University of Madrid. The author has contributed to research in topics: Prolactin & Melatonin. The author has an hindex of 38, co-authored 261 publications receiving 5588 citations. Previous affiliations of Ana I. Esquifino include Academy of Sciences of the Czech Republic & Pontifical Catholic University of Argentina.


Papers
More filters
Journal ArticleDOI
TL;DR: Melatonin has the potential therapeutic value to enhance immune function in aged individuals and in patients in an immunocompromised state and by regulating intracellular glutathione levels.
Abstract: Aging is associated with a decline in immune function (immunosenescence), a situation known to correlate with increased incidence of cancer, infectious and degenerative diseases. Innate, cellular and humoral immunity all exhibit increased deterioration with age. A decrease in functional competence of individual natural killer (NK) cells is found with advancing age. Macrophages and granulocytes show functional decline in aging as evidenced by their diminished phagocytic activity and impairment of superoxide generation. There is also marked shift in cytokine profile as age advances, e.g., CD3+ and CD4+ cells decline in number whereas CD8+ cells increase in elderly individuals. A decline in organ specific antibodies occurs causing reduced humoral responsiveness. Circulating melatonin decreases with age and in recent years much interest has been focused on its immunomodulatory effect. Melatonin stimulates the production of progenitor cells for granulocytes-macrophages. It also stimulates the production of NK cells and CD4+ cells and inhibits CD8+ cells. The production and release of various cytokines from NK cells and T-helper lymphocytes also are enhanced by melatonin. Melatonin presumably regulates immune function by acting on the immune-opioid network, by affecting G protein-cAMP signal pathway and by regulating intracellular glutathione levels. Melatonin has the potential therapeutic value to enhance immune function in aged individuals and in patients in an immunocompromised state.

213 citations

Journal ArticleDOI
TL;DR: Melatonin’s efficacy in combating free radical damage in the brain suggests that it may be a valuable therapeutic agent in the treatment of cerebral edema after traumatic brain injury.
Abstract: The pineal product melatonin has remarkable antioxidant properties. It scavenges hydroxyl, carbonate and various organic radicals, peroxynitrite and other reactive nitrogen species. Melatonyl radicals formed by scavenging combine with and, thereby, detoxify superoxide anions in processes terminating the radical reaction chains. Melatonin also enhances the antioxidant potential of the cell by stimulating the synthesis of antioxidant enzymes like superoxide dismutase, glutathione peroxidase and glutathione reductase, and by augmenting glutathione levels. The decline in melatonin production in aged individuals has been suggested as one of the primary contributing factors for the development of age-associated neurodegenerative diseases,e.g., Alzheimer’s disease. Melatonin has been shown to be effective in arresting neurodegenerative phenomena seen in experimental models of Alzheimer’s disease, Parkinsonism and ischemic stroke. Melatonin preserves mitochondrial homeostasis, reduces free radical generation, e.g., by enhancing mitochondrial glutathione levels, and safeguards proton potential and ATP synthesis by stimulating complex I and IV activities. Therapeutic trials with melatonin have been effective in slowing the progression of Alzheimer’s disease but not of Parkinson’s disease. Melatonin’s efficacy in combating free radical damage in the brain suggests that it may be a valuable therapeutic agent in the treatment of cerebral edema after traumatic brain injury.

210 citations

Journal ArticleDOI
TL;DR: Melatonin seems to have a fundamental role as a system regulator in haemopoiesis and immuno‐enhancement, appears to be closely involved in several fundamental aspects of host defense and has the potential to be useful as an adjuvant tumour immunotherapeutic agent.
Abstract: Melatonin, a neurohormone produced mainly by the pineal gland, is a modulator of haemopoiesis and of immune cell production and function, both in vivo and in vitro. Physiologically, melatonin is associated with T-helper 1 (Th1) cytokines, and its administration favours Th1 priming. In both normal and leukaemic mice, melatonin administration results in quantitative and functional enhancement of natural killer (NK) cells, whose role is to mediate defenses against virus-infected and cancer cells. Melatonin appears to regulate cell dynamics, including the proliferative and maturational stages of virtually all haemopoietic and immune cells lineages involved in host defense - not only NK cells but also T and B lymphocytes, granulocytes and monocytes - in both bone marrow and tissues. In particular, melatonin is a powerful antiapoptotic signal promoting the survival of normal granulocytes and B lymphocytes. In mice bearing mid-stage leukaemia, daily administration of melatonin results in a survival index of 30-40% vs. 0% in untreated mice. Thus, melatonin seems to have a fundamental role as a system regulator in haemopoiesis and immuno-enhancement, appears to be closely involved in several fundamental aspects of host defense and has the potential to be useful as an adjuvant tumour immunotherapeutic agent.

183 citations

Journal ArticleDOI
TL;DR: Melatonin effect on body weight progression, mean levels and 24-hr pattern of circulating adiponectin, leptin, insulin, glucose, triglycerides and cholesterol were examined in rats fed a normal or a high-fat diet.
Abstract: Melatonin effect on body weight progression, mean levels and 24-hr pattern of circulating adiponectin, leptin, insulin, glucose, triglycerides and cholesterol were examined in rats fed a normal or a high-fat diet. In experiment 1, rats fed a normal diet were divided into two groups: receiving melatonin (25 μg/mL drinking water) or vehicle for 9 wk. In experiment 2, animals were divided into three groups: two fed with a high-fat diet (35% fat) and melatonin (25 μg/mL) or vehicle in drinking water for 11 wk, while a third group was given a normal diet (4% fat). At the end of experiments, groups of eight rats were killed at six different time intervals throughout a 24-hr period. Melatonin administration for 9 wk decreased body weight gain from the 3rd wk on without affecting food intake. A significant reduction in circulating insulin, glucose and triglyceride mean levels and disrupted daily patterns of plasma adiponectin, leptin and insulin were observed after melatonin. In high fat-fed rats, melatonin attenuated body weight increase, hyperglycemia and hyperinsulinemia, as well as the increase in mean plasma adiponectin, leptin, triglycerides and cholesterol levels. The high-fat diet disrupted normal 24-hr patterns of circulating adiponectin, insulin and cholesterol, the effects on insulin and cholesterol being counteracted by melatonin. Nocturnal plasma melatonin concentration in control and obese rats receiving melatonin for 11 wk attained values 21-24-fold greater than controls. The results indicate that melatonin counteracts some of the disrupting effects of diet-induced obesity in rats.

132 citations

Journal ArticleDOI
TL;DR: The production and release of various cytokines from natural killer cells and T helper lymphocytes are enhanced by melatonin, which has the potential therapeutic value to enhance immune function in aged individuals.
Abstract: Aging is associated with a decline in immune function (immunosenescence), a condition known to correlate with increased incidence of cancer as well as infectious and degenerative diseases. Innate, cellular and humoral immunity all exhibit increased deterioration with age. Circulating melatonin decreases with age, and in recent years much interest has been focused on its immunomodulatory effect. Melatonin stimulates the production of progenitor cells for granulocytes and macrophages. It also stimulates the production of natural killer cells and CD4+ cells and inhibits CD8+ cells. The production and release of various cytokines from natural killer cells and T helper lymphocytes are enhanced by melatonin. Melatonin has the potential therapeutic value to enhance immune function in aged individuals.

128 citations


Cited by
More filters
Journal Article
TL;DR: The activation of SNS during an immune response might be aimed to localize the inflammatory response, through induction of neutrophil accumulation and stimulation of more specific humoral immune responses, although systemically it may suppress Th1 responses, and, thus protect the organism from the detrimental effects of proinflammatory cytokines and other products of activated macrophages.
Abstract: The brain and the immune system are the two major adaptive systems of the body During an immune response the brain and the immune system "talk to each other" and this process is essential for maintaining homeostasis Two major pathway systems are involved in this cross-talk: the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS) This overview focuses on the role of SNS in neuroimmune interactions, an area that has received much less attention than the role of HPA axis Evidence accumulated over the last 20 years suggests that norepinephrine (NE) fulfills the criteria for neurotransmitter/neuromodulator in lymphoid organs Thus, primary and secondary lymphoid organs receive extensive sympathetic/noradrenergic innervation Under stimulation, NE is released from the sympathetic nerve terminals in these organs, and the target immune cells express adrenoreceptors Through stimulation of these receptors, locally released NE, or circulating catecholamines such as epinephrine, affect lymphocyte traffic, circulation, and proliferation, and modulate cytokine production and the functional activity of different lymphoid cells Although there exists substantial sympathetic innervation in the bone marrow, and particularly in the thymus and mucosal tissues, our knowledge about the effect of the sympathetic neural input on hematopoiesis, thymocyte development, and mucosal immunity is extremely modest In addition, recent evidence is discussed that NE and epinephrine, through stimulation of the beta(2)-adrenoreceptor-cAMP-protein kinase A pathway, inhibit the production of type 1/proinflammatory cytokines, such as interleukin (IL-12), tumor necrosis factor-alpha, and interferon-gamma by antigen-presenting cells and T helper (Th) 1 cells, whereas they stimulate the production of type 2/anti-inflammatory cytokines such as IL-10 and transforming growth factor-beta Through this mechanism, systemically, endogenous catecholamines may cause a selective suppression of Th1 responses and cellular immunity, and a Th2 shift toward dominance of humoral immunity On the other hand, in certain local responses, and under certain conditions, catecholamines may actually boost regional immune responses, through induction of IL-1, tumor necrosis factor-alpha, and primarily IL-8 production Thus, the activation of SNS during an immune response might be aimed to localize the inflammatory response, through induction of neutrophil accumulation and stimulation of more specific humoral immune responses, although systemically it may suppress Th1 responses, and, thus protect the organism from the detrimental effects of proinflammatory cytokines and other products of activated macrophages The above-mentioned immunomodulatory effects of catecholamines and the role of SNS are also discussed in the context of their clinical implication in certain infections, major injury and sepsis, autoimmunity, chronic pain and fatigue syndromes, and tumor growth Finally, the pharmacological manipulation of the sympathetic-immune interface is reviewed with focus on new therapeutic strategies using selective alpha(2)- and beta(2)-adrenoreceptor agonists and antagonists and inhibitors of phosphodiesterase type IV in the treatment of experimental models of autoimmune diseases, fibromyalgia, and chronic fatigue syndrome

2,030 citations

Journal ArticleDOI
TL;DR: This review aims to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings.
Abstract: Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.

1,964 citations

Journal ArticleDOI
TL;DR: It is clear that there are multiple actions associated with PRL, and the technique of gene targeting in mice has been used to develop the first experimental model in which the effect of the complete absence of any lactogen or PRL-mediated effects can be studied.
Abstract: PRL is an anterior pituitary hormone that, along with GH and PLs, forms a family of hormones that probably resulted from the duplication of an ancestral gene. The PRLR is also a member of a larger family, known as the cytokine class-1 receptor superfamily, which currently has more than 20 different members. PRLRs or binding sites are widely distributed throughout the body. In fact, it is difficult to find a tissue that does not express any PRLR mRNA or protein. In agreement with this wide distribution of receptors is the fact that now more than 300 separate actions of PRL have been reported in various vertebrates, including effects on water and salt balance, growth and development, endocrinology and metabolism, brain and behavior, reproduction, and immune regulation and protection. Clearly, a large proportion of these actions are directly or indirectly associated with the process of reproduction, including many behavioral effects. PRL is also becoming well known as an important regulator of immune function. A number of disease states, including the growth of different forms of cancer as well as various autoimmune diseases, appear to be related to an overproduction of PRL, which may act in an endocrine, autocrine, or paracrine manner, or via an increased sensitivity to the hormone. The first step in the mechanism of action of PRL is the binding to a cell surface receptor. The ligand binds in a two-step process in which site 1 on PRL binds to one receptor molecule, after which a second receptor molecule binds to site 2 on the hormone, forming a homodimer consisting of one molecule of PRL and two molecules of receptor. The PRLR contains no intrinsic tyrosine kinase cytoplasmic domain but associates with a cytoplasmic tyrosine kinase, JAK2. Dimerization of the receptor induces tyrosine phosphorylation and activation of the JAK kinase followed by phosphorylation of the receptor. Other receptor-associated kinases of the Src family have also been shown to be activated by PRL. One major pathway of signaling involves phosphorylation of cytoplasmic State proteins, which themselves dimerize and translocate to nucleus and bind to specific promoter elements on PRL-responsive genes. In addition, the Ras/Raf/MAP kinase pathway is also activated by PRL and may be involved in the proliferative effects of the hormone. Finally, a number of other potential mediators have been identified, including IRS-1, PI-3 kinase, SHP-2, PLC gamma, PKC, and intracellular Ca2+. The technique of gene targeting in mice has been used to develop the first experimental model in which the effect of the complete absence of any lactogen or PRL-mediated effects can be studied. Heterozygous (+/-) females show almost complete failure to lactate after the first, but not subsequent, pregnancies. Homozygous (-/-) females are infertile due to multiple reproductive abnormalities, including ovulation of premeiotic oocytes, reduced fertilization of oocytes, reduced preimplantation oocyte development, lack of embryo implantation, and the absence of pseudopregnancy. Twenty per cent of the homozygous males showed delayed fertility. Other phenotypes, including effects on the immune system and bone, are currently being examined. It is clear that there are multiple actions associated with PRL. It will be important to correlate known effects with local production of PRL to differentiate classic endocrine from autocrine/paracrine effects. The fact that extrapituitary PRL can, under some circumstances, compensate for pituitary PRL raises the interesting possibility that there may be effects of PRL other than those originally observed in hypophysectomized rats. The PRLR knockout mouse model should be an interesting system by which to look for effects activated only by PRL or other lactogenic hormones. On the other hand, many of the effects reported in this review may be shared with other hormones, cytokines, or growth factors and thus will be more difficult to study. (ABSTRACT TRUNCATED)

1,838 citations

Journal ArticleDOI
TL;DR: These observations urge further study of the onset of puberty as a possible sensitive and early marker of the interactions between environmental conditions and genetic susceptibility that can influence physiological and pathological processes.
Abstract: During the past decade, possible advancement in timing of puberty has been reported in the United States. In addition, early pubertal development and an increased incidence of sexual precocity have been noticed in children, primarily girls, migrating for foreign adoption in several Western European countries. These observations are raising the issues of current differences and secular trends in timing of puberty in relation to ethnic, geographical, and socioeconomic background. None of these factors provide an unequivocal explanation for the earlier onset of puberty seen in the United States. In the formerly deprived migrating children, refeeding and catch-up growth may prime maturation. However, precocious puberty is seen also in some nondeprived migrating children. Attention has been paid to the changing milieu after migration, and recently, the possible role of endocrine- disrupting chemicals from the environment has been considered. These observations urge further study of the onset of puberty as a possible sensitive and early marker of the interactions between environmental conditions and genetic susceptibility that can influence physiological and pathological processes.

1,494 citations

Journal Article
TL;DR: This is a paid internship where interns work directly to assist the Director of Marketing and Communications on various tasks relating to upcoming GRA events.
Abstract: OVERVIEW The GRA Marketing Internship Program is offered to students who are interested in gaining valuable work experience through efforts in marketing, membership, sales, and events. Interns work directly to assist the Director of Marketing and Communications on various tasks relating to upcoming GRA events. During this internship, students will work a minimum of 10 hours a week and a maximum of 20 hours a week. Students are encouraged to earn credit for their internship, however this is a paid internship. Students interested in obtaining credit for their internship must consult their academic advisor or the intern coordinator at their academic unit.

1,309 citations