scispace - formally typeset
Search or ask a question
Author

Ana Paula Arez

Bio: Ana Paula Arez is an academic researcher from Universidade Nova de Lisboa. The author has contributed to research in topics: Plasmodium falciparum & Malaria. The author has an hindex of 19, co-authored 47 publications receiving 1543 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that P. ovale comprises 2 nonrecombining species that are sympatric in Africa and Asia and speculate on possible scenarios that could have led to this speciation.
Abstract: Background: Malaria in humans is caused by apicomplexan parasites belonging to 5 species of the genus Plasmodium. Infections with Plasmodium ovale are widely distributed but rarely investigated, and the resulting burden of disease is not known. Dimorphism in defined genes has led to P. ovale parasites being divided into classic and variant types. We hypothesized that these dimorphs represent distinct parasite species. Methods: Multilocus sequence analysis of 6 genetic characters was carried out among 55 isolates from 12 African and 3 Asia-Pacific countries. Results: Each genetic character displayed complete dimorphism and segregated perfectly between the 2 types. Both types were identified in samples from Ghana, Nigeria, Sao Tome, Sierra Leone, and Uganda and have been described previously in Myanmar. Splitting of the 2 lineages is estimated to have occurred between 1.0 and 3.5 million years ago in hominid hosts. Conclusions: We propose that P. ovale comprises 2 nonrecombining species that are sympatric in Africa and Asia. We speculate on possible scenarios that could have led to this speciation. Furthermore, the relatively high frequency of imported cases of symptomatic P. ovale infection in the United Kingdom suggests that the morbidity caused by ovale malaria has been underestimated.

342 citations

Journal ArticleDOI
TL;DR: This study demonstrated that P. vivax infections were found both in humans and mosquitoes, which means that active transmission is occurring, and reinforces the idea that this parasite is able to use receptors other than Duffy to invade erythrocytes, which may have an enormous impact in P.vivax current distribution.
Abstract: Background Plasmodium vivax shows a small prevalence in West and Central Africa due to the high prevalence of Duffy negative people. However, Duffy negative individuals infected with P. vivax have been reported in areas of high prevalence of Duffy positive people who may serve as supply of P. vivax strains able to invade Duffy negative erythrocytes. We investigated the presence of P. vivax in two West African countries, using blood samples and mosquitoes collected during two on-going studies.

176 citations

Journal ArticleDOI
TL;DR: Entomological inoculation rate estimates are generated using a standard method and an alternative method that allows the calculation of confidence intervals based on a negative binomial distribution of sporozoite positive mosquitoes, which show large variations over short distances in time and space.
Abstract: An entomological study on vectors of malaria and their relative contribution to Plasmodium falciparum transmission in the semi-urban area of Ifakara, south-eastern Tanzania, was conducted. A total of 32 houses were randomly sampled from the area and light trap catches (LTC) performed in one room in each house every 2 weeks for 1 year. A total of 147 448 mosquitoes were caught from 789 LTC; 26 134 Anopheles gambiae s.l., 615 A. funestus, 718 other anophelines and 119 981 culicines. More than 60% of the total A. gambiae s.l. were found in five (0.6%) LTCs, with a maximum of 5889 caught in a single trap. Of 505 A. gambiae s.l. speciated by polymerase chain reaction, 91.5% were found to be A. arabiensis. Plasmodium falciparum sporozoite enzyme-linked immunosorbent assay tests were performed on 10 108 anopheles mosquitoes and 39 (0.38%) were positive. Entomological inoculation rate (EIR) estimates were generated using a standard method and an alternative method that allows the calculation of confidence intervals based on a negative binomial distribution of sporozoite positive mosquitoes. Overall EIR estimates were similar; 31 vs. 29 [95% confidence interval (CI): 19, 44] infectious bites per annum, respectively. The EIR ranged from 4 (95% CI: 1, 17) in the cool season to 108 (95% CI: 69, 170) in the wet season and from 54 (95% CI: 30, 97) in the east of the town to 15 (95% CI: 8, 30) in the town centre. These estimates show large variations over short distances in time and space. They are all markedly lower than those reported from nearby rural areas and for other parts of Tanzania.

144 citations

Journal ArticleDOI
TL;DR: Limits in comparing results on multiplicity of infection derived from different laboratories are revealed and this study emphasizes the need for highly standardized laboratory protocols for genotyping by PCR.
Abstract: Genetic diversity of malaria parasites represents a major issue in understanding several aspects of malaria infection and disease. Genotyping of Plasmodium falciparum infections with polymerase chain reaction (PCR)-based methods has therefore been introduced in epidemiological studies. Polymorphic regions of the msp1, msp2 and glurp genes are the most frequently used markers for genotyping, but methods may differ. A multicentre study was therefore conducted to evaluate the comparability of results from different laboratories when the same samples were analysed. Analyses of laboratory-cloned lines revealed high specificity but varying sensitivity. Detection of low-density clones was hampered in multiclonal infections. Analyses of isolates from Tanzania and Papua New Guinea revealed similar positivity rates with the same allelic types identified. The number of alleles detected per isolate, however, varied systematically between the laboratories especially at high parasite densities. When the analyses were repeated within the laboratories, high agreement was found in getting positive or negative results but with a random variation in the number of alleles detected. The msp2 locus appeared to be the most informative single marker for analyses of multiplicity of infection. Genotyping by PCR is a powerful tool for studies on genetic diversity of P. falciparum but this study has revealed limitations in comparing results on multiplicity of infection derived from different laboratories and emphasizes the need for highly standardized laboratory protocols.

138 citations

Journal ArticleDOI
TL;DR: It is concluded that the mode of collection and storage of blood samples may influence the sensitivity of detection of malaria parasites by PCR, which may be critical in studies including individuals with low parasitaemia, mixed infections and comparison of data from different settings.
Abstract: Polymerase chain reaction (PCR) is now widely used in malaria research for analysis of field samples. However, little has been reported regarding loss of sensitivity due to field methodology. Therefore, studies were carried out in relation to blood sampling (anticoagulants, culture medium, filter paper), storage (temperature, time and immediate lysis) and handling (repeated thawing and freezing). The PCR was unaffected by citrate and EDTA but partly inhibited by heparin (inhibition was reversed by heparinase at optimal concentrations). Samples collected on filter paper showed a significant 100-fold lower sensitivity (compared to control samples frozen immediately after collection) when stored at 30 degrees C and 60% humidity; and the paper quality appeared to be critical. Storage of unprocessed whole blood at 4 degrees C, 20 degrees C or 30 degrees C rarely resulted in any loss of sensitivity. Repeated thawing generally resulted in 10-fold loss of sensitivity compared to blood kept frozen until DNA extraction. The presence of antimalarial drug did not apparently affect sensitivity. We conclude that the mode of collection and storage of blood samples may influence the sensitivity of detection of malaria parasites by PCR. This may be critical in studies including individuals with low parasitaemia, mixed infections and comparison of data from different settings.

95 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed evidence of the clinical implications and burden of malaria in pregnancy and found that successful prevention of these infections reduces the risk of severe maternal anaemia by 38%, low birthweight by 43%, and perinatal mortality by 27% among paucigravidae.
Abstract: We reviewed evidence of the clinical implications and burden of malaria in pregnancy. Most studies come from sub-Saharan Africa, where approximately 25 million pregnant women are at risk of Plasmodium falciparum infection every year, and one in four women have evidence of placental infection at the time of delivery. P falciparum infections during pregnancy in Africa rarely result in fever and therefore remain undetected and untreated. Meta-analyses of intervention trials suggest that successful prevention of these infections reduces the risk of severe maternal anaemia by 38%, low birthweight by 43%, and perinatal mortality by 27% among paucigravidae. Low birthweight associated with malaria in pregnancy is estimated to result in 100 000 infant deaths in Africa each year. Although paucigravidae are most affected by malaria, the consequences for infants born to multigravid women in Africa may be greater than previously appreciated. This is because HIV increases the risk of malaria and its adverse effects, particularly in multigravidae, and recent observational studies show that placental infection almost doubles the risk of malaria infection and morbidity in infants born to multigravidae. Outside Africa, malaria infection rates in pregnant women are much lower but are more likely to cause severe disease, preterm births, and fetal loss. Plasmodium vivax is common in Asia and the Americas and, unlike P falciparum, does not cytoadhere in the placenta, yet, is associated with maternal anaemia and low birthweight. The effect of infection in the first trimester, and the longer term effects of malaria beyond infancy, are largely unknown and may be substantial. Better estimates are also needed of the effects of malaria in pregnancy outside Africa, and on maternal morbidity and mortality in Africa. Global risk maps will allow better estimation of potential impact of successful control of malaria in pregnancy.

988 citations

Journal ArticleDOI
TL;DR: The intraspecific patterns of diversity and genetic differentiation observed in P. falciparum are strikingly similar to those seen in interspecific comparisons of plants and animals with differing levels of outcrossing, suggesting that similar processes may be involved.
Abstract: Multilocus genotyping of microbial pathogens has revealed a range of population structures, with some bacteria showing extensive recombination and others showing almost complete clonality. The population structure of the protozoan parasite Plasmodium falciparum has been harder to evaluate, since most studies have used a limited number of antigen-encoding loci that are known to be under strong selection. We describe length variation at 12 microsatellite loci in 465 infections collected from 9 locations worldwide. These data reveal dramatic differences in parasite population structure in different locations. Strong linkage disequilibrium (LD) was observed in six of nine populations. Significant LD occurred in all locations with prevalence <1% and in only two of five of the populations from regions with higher transmission intensities. Where present, LD results largely from the presence of identical multilocus genotypes within populations, suggesting high levels of self-fertilization in populations with low levels of transmission. We also observed dramatic variation in diversity and geographical differentiation in different regions. Mean heterozygosities in South American countries (0.3-0.4) were less than half those observed in African locations (0. 76-0.8), with intermediate heterozygosities in the Southeast Asia/Pacific samples (0.51-0.65). Furthermore, variation was distributed among locations in South America (F:(ST) = 0.364) and within locations in Africa (F:(ST) = 0.007). The intraspecific patterns of diversity and genetic differentiation observed in P. falciparum are strikingly similar to those seen in interspecific comparisons of plants and animals with differing levels of outcrossing, suggesting that similar processes may be involved. The differences observed may also reflect the recent colonization of non-African populations from an African source, and the relative influences of epidemiology and population history are difficult to disentangle. These data reveal a range of population structures within a single pathogen species and suggest intimate links between patterns of epidemiology and genetic structure in this organism.

737 citations

Journal ArticleDOI
TL;DR: How control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed are drawn together to show how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir.
Abstract: Malaria remains a major cause of morbidity and mortality in the tropics, with Plasmodium falciparum responsible for the majority of the disease burden and P. vivax being the geographically most widely distributed cause of malaria. Gametocytes are the sexual-stage parasites that infect Anopheles mosquitoes and mediate the onward transmission of the disease. Gametocytes are poorly studied despite this crucial role, but with a recent resurgence of interest in malaria elimination, the study of gametocytes is in vogue. This review highlights the current state of knowledge with regard to the development and longevity of P. falciparum and P. vivax gametocytes in the human host and the factors influencing their distribution within endemic populations. The evidence for immune responses, antimalarial drugs, and drug resistance influencing infectiousness to mosquitoes is reviewed. We discuss how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir. These components are drawn together to show how control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed.

651 citations

Journal ArticleDOI
TL;DR: This first systematic effort to map the global endemicity of Plasmodium vivax is presented, intended to contribute to a much-needed paradigm shift towards geographically stratified and evidence-based planning for P. v Vivax control and elimination.
Abstract: Background: Current understanding of the spatial epidemiology and geographical distribution of Plasmodium vivax is far less developed than that for P. falciparum, representing a barrier to rational strategies for control and elimination. Here we present the first systematic effort to map the global endemicity of this hitherto neglected parasite. Methodology and Findings: We first updated to the year 2010 our earlier estimate of the geographical limits of P. vivax transmission. Within areas of stable transmission, an assembly of 9,970 geopositioned P. vivax parasite rate (PvPR) surveys collected from 1985 to 2010 were used with a spatiotemporal Bayesian model-based geostatistical approach to estimate endemicity age-standardised to the 1–99 year age range (PvPR1–99) within every 565 km resolution grid square. The model incorporated data on Duffy negative phenotype frequency to suppress endemicity predictions, particularly in Africa. Endemicity was predicted within a relatively narrow range throughout the endemic world, with the point estimate rarely exceeding 7% PvPR1–99. The Americas contributed 22% of the global area at risk of P. vivax transmission, but high endemic areas were generally sparsely populated and the region contributed only 6% of the 2.5 billion people at risk (PAR) globally. In Africa, Duffy negativity meant stable transmission was constrained to Madagascar and parts of the Horn, contributing 3.5% of global PAR. Central Asia was home to 82% of global PAR with important high endemic areas coinciding with dense populations particularly in India and Myanmar. South East Asia contained areas of the highest endemicity in Indonesia and Papua New Guinea and contributed 9% of global PAR.

543 citations