scispace - formally typeset
Search or ask a question
Author

Ana Paula Rocha

Bio: Ana Paula Rocha is an academic researcher from University of Porto. The author has contributed to research in topics: Autoregressive fractionally integrated moving average & Autoregressive model. The author has an hindex of 18, co-authored 83 publications receiving 2495 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A robust single-lead electrocardiogram (ECG) delineation system based on the wavelet transform (WT), outperforming the results of other well known algorithms, especially in determining the end of T wave.
Abstract: In this paper, we developed and evaluated a robust single-lead electrocardiogram (ECG) delineation system based on the wavelet transform (WT). In a first step, QRS complexes are detected. Then, each QRS is delineated by detecting and identifying the peaks of the individual waves, as well as the complex onset and end. Finally, the determination of P and T wave peaks, onsets and ends is performed. We evaluated the algorithm on several manually annotated databases, such as MIT-BIH Arrhythmia, QT, European ST-T and CSE databases, developed for validation purposes. The QRS detector obtained a sensitivity of Se=99.66% and a positive predictivity of P+=99.56% over the first lead of the validation databases (more than 980,000 beats), while for the well-known MIT-BIH Arrhythmia Database, Se and P+ over 99.8% were attained. As for the delineation of the ECG waves, the mean and standard deviation of the differences between the automatic and manual annotations were computed. The mean error obtained with the WT approach was found not to exceed one sampling interval, while the standard deviations were around the accepted tolerances between expert physicians, outperforming the results of other well known algorithms, especially in determining the end of T wave.

1,490 citations

Journal ArticleDOI
TL;DR: It was found that all the four criteria underestimate the true AR order; specifying a fixed model order was looked at and it was recommended that an AR order not less than p = 16, should be used for spectral analysis of short segments of tachograms.
Abstract: Heart rate variability (HRV) has been used as a non-invasive marker of the activity of the autonomic nervous system and its spectrum analysis gives a measure of the sympatho-vagal balance. If short segments are used in an attempt to improve temporal resolution, autoregressive spectral estimation, where the mode] order must be estimated, is preferred. In this paper we compare four criteria for the estimation of the 'optimum' model order for an autoregressive (AR) process applied to short segments of tachograms used for HRV analysis. The criteria used were Akaike's final prediction error, Akaike's information criterion, Parzen's criterion of autoregressive transfer function and Rissanen's minimum description length method, and they were first applied to tachograms to verify (i) the range and distribution of model orders obtained and (ii) if the different techniques suggest the same model order for the same frames. The four techniques were then tested using a true AR process of known order p = 6; this verified the ability of the criteria to estimate the correct order of a true AR process and the effect, on the spectrum, of choosing a wrong model order was also investigated. It was found that all the four criteria underestimate the true AR order; specifying a fixed model order was then looked at and it is recommended that an AR order not less than p = 16, should be used for spectral analysis of short segments of tachograms.

217 citations

Journal ArticleDOI
TL;DR: Findings support the hypothesis of increased autonomic nervous system activity in the final minutes of labor and of decreased central nervous systemActivity, both in thefinal minutes ofLabor and in moderate-to-severe acidemic fetuses.
Abstract: Linear and nonlinear fetal heart rate (FHR) indices, namely mean FHR, interval index (II), very low, low and high frequencies, approximate (ApEn) and sample entropy (SampEn), were computed, immediately before delivery, in the initial and final FHR tracing segments, from 48 normal, 10 mildly acidemic and 10 moderate-to-severely acidemic fetuses. Progression of labor was associated with a significant increase in linear frequency domain indices whereas nonlinear indices were significantly decreased. Moderate-to-severe fetal acidemia was associated with a significant decrease in nonlinear indices. The best discrimination between moderate-to-severe acidemic fetuses and the remaining cases was obtained combining II and ApEn(2,0.15), with a specificity of 71% and a sensitivity of 80%. These findings support the hypothesis of increased autonomic nervous system activity in the final minutes of labor and of decreased central nervous system activity, both in the final minutes of labor and in moderate-to-severe acidemic fetuses.

102 citations

Journal ArticleDOI
TL;DR: Results support the hypothesis that entropy and linear variability indices measure different FHR features and evidenced more signs of autonomous nervous system activity, with sympatho-vagal imbalance, than patterns associated with calm sleep and calm wakefulness.

72 citations

Journal ArticleDOI
TL;DR: The application shows that δ represents a useful measure of phylogenetic signal since many phenotypes can only be measured in categories, and shows that it can successfully detect molecular signatures of phenotypic evolution.
Abstract: MOTIVATION Determining whether a trait and phylogeny share some degree of phylogenetic signal is a flagship goal in evolutionary biology. Signatures of phylogenetic signal can assist the resolution of a broad range of evolutionary questions regarding the tempo and mode of phenotypic evolution. However, despite the considerable number of strategies to measure it, few and limited approaches exist for categorical traits. Here, we used the concept of Shannon entropy and propose the δ statistic for evaluating the degree of phylogenetic signal between a phylogeny and categorical traits. RESULTS We validated δ as a measure of phylogenetic signal: the higher the δ-value the higher the degree of phylogenetic signal between a given tree and a trait. Based on simulated data we proposed a threshold-based classification test to pinpoint cases of phylogenetic signal. The assessment of the test's specificity and sensitivity suggested that the δ approach should only be applied to 20 or more species. We have further tested the performance of δ in scenarios of branch length and topology uncertainty, unbiased and biased trait evolution and trait saturation. Our results showed that δ may be applied in a wide range of phylogenetic contexts. Finally, we investigated our method in 14 360 mammalian gene trees and found that olfactory receptor genes are significantly associated with the mammalian activity patterns, a result that is congruent with expectations and experiments from the literature. Our application shows that δ can successfully detect molecular signatures of phenotypic evolution. We conclude that δ represents a useful measure of phylogenetic signal since many phenotypes can only be measured in categories. AVAILABILITY AND IMPLEMENTATION https://github.com/mrborges23/delta_statistic. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

68 citations


Cited by
More filters
01 Mar 2007
TL;DR: An initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI is described.
Abstract: Acute kidney injury (AKI) is a complex disorder for which currently there is no accepted definition. Having a uniform standard for diagnosing and classifying AKI would enhance our ability to manage these patients. Future clinical and translational research in AKI will require collaborative networks of investigators drawn from various disciplines, dissemination of information via multidisciplinary joint conferences and publications, and improved translation of knowledge from pre-clinical research. We describe an initiative to develop uniform standards for defining and classifying AKI and to establish a forum for multidisciplinary interaction to improve care for patients with or at risk for AKI. Members representing key societies in critical care and nephrology along with additional experts in adult and pediatric AKI participated in a two day conference in Amsterdam, The Netherlands, in September 2005 and were assigned to one of three workgroups. Each group's discussions formed the basis for draft recommendations that were later refined and improved during discussion with the larger group. Dissenting opinions were also noted. The final draft recommendations were circulated to all participants and subsequently agreed upon as the consensus recommendations for this report. Participating societies endorsed the recommendations and agreed to help disseminate the results. The term AKI is proposed to represent the entire spectrum of acute renal failure. Diagnostic criteria for AKI are proposed based on acute alterations in serum creatinine or urine output. A staging system for AKI which reflects quantitative changes in serum creatinine and urine output has been developed. We describe the formation of a multidisciplinary collaborative network focused on AKI. We have proposed uniform standards for diagnosing and classifying AKI which will need to be validated in future studies. The Acute Kidney Injury Network offers a mechanism for proceeding with efforts to improve patient outcomes.

5,467 citations

Journal ArticleDOI
TL;DR: The various applications of HRV and different linear, frequency domain, wavelet domain, nonlinear techniques used for the analysis of the HRV are discussed.
Abstract: Heart rate variability (HRV) is a reliable reflection of the many physiological factors modulating the normal rhythm of the heart. In fact, they provide a powerful means of observing the interplay between the sympathetic and parasympathetic nervous systems. It shows that the structure generating the signal is not only simply linear, but also involves nonlinear contributions. Heart rate (HR) is a nonstationary signal; its variation may contain indicators of current disease, or warnings about impending cardiac diseases. The indicators may be present at all times or may occur at random-during certain intervals of the day. It is strenuous and time consuming to study and pinpoint abnormalities in voluminous data collected over several hours. Hence, HR variation analysis (instantaneous HR against time axis) has become a popular noninvasive tool for assessing the activities of the autonomic nervous system. Computer based analytical tools for in-depth study of data over daylong intervals can be very useful in diagnostics. Therefore, the HRV signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. In this paper, we have discussed the various applications of HRV and different linear, frequency domain, wavelet domain, nonlinear techniques used for the analysis of the HRV.

2,344 citations

Journal ArticleDOI
TL;DR: This paper will provide psychophysiological researchers with recommendations and practical advice concerning experimental designs, data analysis, and data reporting to ensure that researchers starting a project with HRV and cardiac vagal tone are well informed regarding methodological considerations in order for their findings to contribute to knowledge advancement in their field.
Abstract: Psychophysiological research integrating heart rate variability (HRV) has increased during the last two decades, particularly given the fact that HRV is able to index cardiac vagal tone. Vagal tone, which represents the activity of the parasympathetic system, is acknowledged to be linked with many phenomena relevant for psychophysiological research, including self-regulation at the cognitive, emotional, social, and health levels. The ease of HRV collection and measurement coupled with the fact it is relatively affordable, non-invasive and pain free makes it widely accessible to many researchers. This ease of access should not obscure the difficulty of interpretation of HRV findings that can be easily misconstrued, however this can be controlled to some extent through correct methodological processes. Standards of measurement were developed two decades ago by a Task Force within HRV research, and recent reviews updated several aspects of the Task Force paper. However, many methodological aspects related to HRV in psychophysiological research have to be considered if one aims to be able to draw sound conclusions, which makes it difficult to interpret findings and to compare results across laboratories. Those methodological issues have mainly been discussed in separate outlets, making difficult to get a grasp on them, and thus this paper aims to address this issue. It will help to provide psychophysiological researchers with recommendations and practical advice concerning experimental designs, data analysis, and data reporting. This will ensure that researchers starting a project with HRV and cardiac vagal tone are well informed regarding methodological considerations in order for their findings to contribute to knowledge advancement in their field.

1,096 citations

22 Jan 2013
TL;DR: Premises of creation of Internet portal designed to provide access to participants of educational and scientific process for the joint creation, consolidation, concentration and rapid spreading of educationaland scientific information resources in its own depository are considered.
Abstract: Premises of creation of Internet portal designed to provide access to participants of educational and scientific process for the joint creation, consolidation, concentration and rapid spreading of educational and scientific information resources in its own depository are considered. CMS-based portal content management systems’ potentiality is investigated. Architecture for Internet portal of MES of Ukraine’s information resources is offered.

969 citations

Journal ArticleDOI
TL;DR: In this review, the emerging role of the wavelet transform in the interrogation of the ECG is discussed in detail, where both the continuous and the discrete transform are considered in turn.
Abstract: The wavelet transform has emerged over recent years as a powerful time-frequency analysis and signal coding tool favoured for the interrogation of complex nonstationary signals. Its application to biosignal processing has been at the forefront of these developments where it has been found particularly useful in the study of these, often problematic, signals: none more so than the ECG. In this review, the emerging role of the wavelet transform in the interrogation of the ECG is discussed in detail, where both the continuous and the discrete transform are considered in turn.

794 citations