scispace - formally typeset
Search or ask a question
Author

Ana Rey-Rico

Bio: Ana Rey-Rico is an academic researcher from Saarland University. The author has contributed to research in topics: Chondrogenesis & Cartilage. The author has an hindex of 25, co-authored 73 publications receiving 1639 citations. Previous affiliations of Ana Rey-Rico include Sorbonne & University of Santiago de Compostela.


Papers
More filters
Journal ArticleDOI
TL;DR: An overall view of the diversity of designs of CD-based supramolecular nanosystems with a special focus on the advances materialized in the last five years, including clinical trials is provided.

127 citations

Journal ArticleDOI
TL;DR: The development of scaffolds that provide temporal and/or spatial control of TGF-β bioavailability has appeal as a mechanism to induce the chondrogenesis of stem cells in vitro and in vivo for articular cartilage repair.
Abstract: The maintenance of a critical threshold concentration of transforming growth factor beta (TGF-β) for a given period of time is crucial for the onset and maintenance of chondrogenesis. Thus, the development of scaffolds that provide temporal and/or spatial control of TGF-β bioavailability has appeal as a mechanism to induce the chondrogenesis of stem cells in vitro and in vivo for articular cartilage repair. In the past decade, many types of scaffolds have been designed to advance this goal: hydrogels based on polysaccharides, hyaluronic acid, and alginate; protein-based hydrogels such as fibrin, gelatin, and collagens; biopolymeric gels and synthetic polymers; and solid and hybrid composite (hydrogel/solid) scaffolds. In this study, we review the progress in developing strategies to deliver TGF-β from scaffolds with the aim of enhancing chondrogenesis. In the future, such scaffolds could prove critical for tissue engineering cartilage, both in vitro and in vivo.

119 citations

Journal ArticleDOI
16 Jan 2014
TL;DR: Various sources of progenitor cells are now available, originating from adult tissues but also from embryonic or reprogrammed tissues, most of which have already been evaluated for their chondrogenic potential in culture and for their reparative properties in vivo upon implantation in relevant animal models of cartilage lesions.
Abstract: Protocols based on the delivery of stem cells are currently applied in patients, showing encouraging results for the treatment of articular cartilage lesions (focal defects, osteoarthritis). Yet, restoration of a fully functional cartilage surface (native structural organization and mechanical functions) especially in the knee joint has not been reported to date, showing the need for improved designs of clinical trials. Various sources of progenitor cells are now available, originating from adult tissues but also from embryonic or reprogrammed tissues, most of which have already been evaluated for their chondrogenic potential in culture and for their reparative properties in vivo upon implantation in relevant animal models of cartilage lesions. Nevertheless, particular attention will be needed regarding their safe clinical use and their potential to form a cartilaginous repair tissue of proper quality and functionality in the patient. Possible improvements may reside in the use of biological supplements in accordance with regulations, while some challenges remain in establishing standardized, effective procedures in the clinics.

113 citations

Journal ArticleDOI
TL;DR: These comprehensive analyses of the entire osteochondral unit with multiple standardized evaluation methods indicate that rAAV‐FLAG‐hsox9/PEO–PPO–PEO hydrogel‐augmented microfracture significantly improves cartilage repair with a collagen fiber orientation more similar to the normal cartilage and protects the subchondral bone plate from early bone loss.
Abstract: Advanced biomaterial-guided delivery of gene vectors is an emerging and highly attractive therapeutic solution for targeted articular cartilage repair, allowing for a controlled and minimally invasive delivery of gene vectors in a spatiotemporally precise manner, reducing intra-articular vector spread and possible loss of the therapeutic gene product. As far as it is known, the very first successful in vivo application of such a biomaterial-guided delivery of a potent gene vector in an orthotopic large animal model of cartilage damage is reported here. In detail, an injectable and thermosensitive hydrogel based on poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO poloxamers, capable of controlled release of a therapeutic recombinant adeno-associated virus (rAAV) vector overexpressing the chondrogenic sox9 transcription factor in full-thickness chondral defects, is applied in a clinically relevant minipig model in vivo. These comprehensive analyses of the entire osteochondral unit with multiple standardized evaluation methods indicate that rAAV-FLAG-hsox9/PEO-PPO-PEO hydrogel-augmented microfracture significantly improves cartilage repair with a collagen fiber orientation more similar to the normal cartilage and protects the subchondral bone plate from early bone loss.

89 citations

Journal ArticleDOI
TL;DR: The present review concisely overviews the most important developments comprising the application of poloxamines in drug delivery, mainly as micellar carriers capable of enhancing drug solubility and stability, and also as surface modifiers in the technology of stealth polymeric nanoparticles.
Abstract: Poloxamines (Tetronic) are X-shaped amphiphilic block copolymers formed by four arms of poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) blocks bonded to a central ethylenediamine moiety Such a structure confers multi-responsive behaviour, namely temperature and pH-sensitiveness At relatively low concentrations but above the critical micellar concentration (CMC), poloxamines generate polymeric micelles Due to the presence of a hydrophobic core, these nanocarriers are useful in the solubilization and stabilization of poorly water-soluble drugs Moreover, chemical modification of the micellar core is feasible These remarkable and unique features, compared to the well-known linear poloxamers, have motivated an increasing interest in the study and application of the branched derivatives in different emerging disciplines The present review concisely overviews the most important developments comprising the application of poloxamines in drug delivery, mainly as micellar carriers capable of enhancing drug solubility and stability, and also as surface modifiers in the technology of stealth polymeric nanoparticles Their potential for the administration of drugs by different routes and the improvement of the drug bioavailability and therapeutic effect are discussed

84 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering are described and the biology of Cartilage and the bony ECM is summarized.
Abstract: Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix (ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering In addition, the biology of cartilage and the bony ECM is also summarized Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed

782 citations

Journal ArticleDOI
TL;DR: With the ever growing toolbox for epoxide polymerization, a "polyether universe" may be envisaged that in its structural diversity parallels the immense variety of structural options available for polymers based on vinyl monomers with a purely carbon-based backbone.
Abstract: The review summarizes current trends and developments in the polymerization of alkylene oxides in the last two decades since 1995, with a particular focus on the most important epoxide monomers ethylene oxide (EO), propylene oxide (PO), and butylene oxide (BO). Classical synthetic pathways, i.e., anionic polymerization, coordination polymerization, and cationic polymerization of epoxides (oxiranes), are briefly reviewed. The main focus of the review lies on more recent and in some cases metal-free methods for epoxide polymerization, i.e., the activated monomer strategy, the use of organocatalysts, such as N-heterocyclic carbenes (NHCs) and N-heterocyclic olefins (NHOs) as well as phosphazene bases. In addition, the commercially relevant double-metal cyanide (DMC) catalyst systems are discussed. Besides the synthetic progress, new types of multifunctional linear PEG (mf-PEG) and PPO structures accessible by copolymerization of EO or PO with functional epoxide comonomers are presented as well as complex bra...

523 citations

Journal ArticleDOI
TL;DR: A review summarizing the progress of supramolecular chemotherapy in cancer treatment based on host-guest recognition and guidance on the design of new targeting supramolescular chemotherapy combining diagnostic and therapeutic functions is presented.
Abstract: Chemotherapy is currently one of the most effective ways to treat cancer. However, traditional chemotherapy faces several obstacles to clinical trials, such as poor solubility/stability, non-targeting capability and uncontrollable release of the drugs, greatly limiting their anticancer efficacy and causing severe side effects towards normal tissues. Supramolecular chemotherapy integrating non-covalent interactions and traditional chemotherapy is a highly promising candidate in this regard and can be appropriately used for targeted drug delivery. By taking advantage of supramolecular chemistry, some limitations impeding traditional chemotherapy for clinical applications can be solved effectively. Therefore, we present here a review summarizing the progress of supramolecular chemotherapy in cancer treatment based on host–guest recognition and provide guidance on the design of new targeting supramolecular chemotherapy combining diagnostic and therapeutic functions. Based on a large number of state-of-the-art studies, our review will advance supramolecular chemotherapy on the basis of host–guest recognition and promote translational clinical applications.

485 citations