scispace - formally typeset
Search or ask a question
Author

Anabela Raymundo

Bio: Anabela Raymundo is an academic researcher from Instituto Superior de Agronomia. The author has contributed to research in topics: Food science & Medicine. The author has an hindex of 29, co-authored 94 publications receiving 2868 citations. Previous affiliations of Anabela Raymundo include Instituto Piaget & Technical University of Lisbon.


Papers
More filters
Journal ArticleDOI
TL;DR: Screening the chemical composition and thermogravimetry properties of five microalgae species with potential application in the food industry found that the carotenogenic C. vulgaris and H. pluvialis showed a higherCarotenoid content, higher fat, low protein and better resistance to thermal treatment.
Abstract: Microalgae are one of the most promising sources for new food and functional food products, and can be used to enhance the nutritional value of foods, due to their well-balanced chemical composition. Knowing their physicochemical characteristics is fundamental for the selection of the most suitable microalgae to specific food technology applications and consequently successful novel foods development. The aim of this study is to screen the chemical composition (e.g., proteins, pigments, fatty acids) and thermogravimetry properties of five microalgae species with potential application in the food industry: Chlorella vulgaris (green and carotenogenic), Haematococcus pluvialis (carotenogenic), Spirulina maxima, Diacronema vlkianum and Isochrysis galbana. C. green and S. maxima presented high protein (38% and 44%, respectively), low fat content (5% and 4%, respectively). The carotenogenic C. vulgaris and H. pluvialis showed a higher carotenoid content, higher fat, low protein and better resistance to thermal treatment. D. vlkianum and I. galbana presented high protein (38–40%) and fat (18–24%) contents with PUFA's ω3, mainly EPA and DHA. Finally, the results from microalgae chemical and thermal analysis were grouped and correlated through Principal Components Analysis (PCA) in order to determine which variables better define and differentiate them.

297 citations

Journal ArticleDOI
TL;DR: The features of the solid-liquid phase transition were analyzed, namely the glass transition temperature and the heat capacity jump associated with the transition from the non-equilibrium glass to the metastable supercooled liquid.
Abstract: More than 50 ionic liquids were prepared by using imidazolium, quaternary ammonium, and guanidinium cations and various anions. In these series, different cationic structures such as 1-benzyl-3-methylimidazolium [Bzmim]+, 1,3-dibenzylimidazolium [BzmiBz]+, 1-octyl-3-methylimidazolium [C8mim]+, 1-decyl-3-methylimidazolium [C10mim]+, tricapryl-methylammonium [Aliquat]+, benzyltriethylammonium [BzTEA]+, phenyltrimethylammonium [PhTMA]+, and dimethyldihexylguanidinium [DMG]+ were combined with anions, p-toluenesulfonate [TSA](-), dicyanoamide [DCA]-, saccharine (2-sulfobenzoic acid imide sodium salt) [SAC]-, trifluoroacetate [TFA]-, bis(trifluoromethanesulfonyl)imide [Tf2N]-, trifluoromethanesulfonate [TfO]-, and thiocyanate [SCN]-. Important physical data for these ionic liquids are collated, namely solubility in common solvents, viscosity, density, melting point and water content. Apart from the viscosity, the Newtonian and non-Newtonian behavior of these ionic liquids is also disclosed. Stability of these ionic liquids under thermal, basic, acidic, nucleophilic, and oxidative conditions was also studied. The features of the solid-liquid phase transition were analyzed, namely the glass transition temperature and the heat capacity jump associated with the transition from the non-equilibrium glass to the metastable supercooled liquid. A degradation temperature of each ionic liquid was also determined. Comparisons of the properties of various ionic liquids were made.

215 citations

Journal ArticleDOI
TL;DR: Microalgae pastas presented very appellative colours, such as orange and green, similar to pastas produced with vegetables, with nutritional advantages, showing energetic values similar to commercial pastas.
Abstract: BACKGROUND: Microalgae are able to enhance the nutritional content of conventional foods and hence to positively affect human health, due to their original chemical composition. The aim of the present study was to prepare fresh spaghetti enriched with different amounts of microalgae biomass (Chlorella vulgaris and Spirulina maxima) and to compare the quality parameters (optimal cooking time, cooking losses, swelling index and water absorption), chemical composition, instrumental texture and colour of the raw and cooked pasta enriched with microalgae biomass with standard semolina spaghetti. RESULTS: The incorporation of microalgae results in an increase of quality parameters when compared to the control sample. The colour of microalgae pastas remained relatively stable after cooking. The addition of microalgae resulted in an increase in the raw pasta firmness when compared to the control sample. Of all the microalgae studied, an increase in the biomass concentration (0.5–2.0%) resulted in a general tendency of an increase in the pasta firmness. Sensory analysis revealed that microalgae pastas had higher acceptance scores by the panellists than the control pasta. CONCLUSION: Microalgae pastas presented very appellative colours, such as orange and green, similar to pastas produced with vegetables, with nutritional advantages, showing energetic values similar to commercial pastas. The use of microalgae biomass can enhance the nutritional and sensorial quality of pasta, without affecting its cooking and textural properties. Copyright © 2010 Society of Chemical Industry

209 citations

Journal ArticleDOI
TL;DR: Microalgae can be regarded as an alternative and promising food ingredient due to their nutritional composition, richness in bioactive compounds, and because they are considered a sustainable protein source for the future.
Abstract: Microalgae can be regarded as an alternative and promising food ingredient due to their nutritional composition, richness in bioactive compounds, and because they are considered a sustainable protein source for the future. The aim of this work was to evaluate microalgae ( Arthrospira platensis F&M-C256, Chlorella vulgaris Allma, Tetraselmis suecica F&M-M33 and Phaeodactylum tricornutum F&M-M40) as innovative ingredients to enhance functional properties of cookies. Two biomass levels were tested and compared to control: 2% (w/w) and 6% (w/w), to provide high levels of algae-bioactives. The cookies sensory and physical properties were evaluated during eight weeks showing high color and texture stability. Cookies prepared with A. platensis and C. vulgaris presented significantly ( p A. platensis cookies were preferred. Besides, A. platensis also provided a structuring effect in terms of cookies texture. All microalgae-based cookies showed significantly higher ( p in vitro antioxidant capacity compared to the control. No significant difference ( p in vitro digestibility between microalgae cookies and the control was found.

188 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal Article
TL;DR: This research examines the interaction between demand and socioeconomic attributes through Mixed Logit models and the state of art in the field of automatic transport systems in the CityMobil project.
Abstract: 2 1 The innovative transport systems and the CityMobil project 10 1.1 The research questions 10 2 The state of art in the field of automatic transport systems 12 2.1 Case studies and demand studies for innovative transport systems 12 3 The design and implementation of surveys 14 3.1 Definition of experimental design 14 3.2 Questionnaire design and delivery 16 3.3 First analyses on the collected sample 18 4 Calibration of Logit Multionomial demand models 21 4.1 Methodology 21 4.2 Calibration of the “full” model. 22 4.3 Calibration of the “final” model 24 4.4 The demand analysis through the final Multinomial Logit model 25 5 The analysis of interaction between the demand and socioeconomic attributes 31 5.1 Methodology 31 5.2 Application of Mixed Logit models to the demand 31 5.3 Analysis of the interactions between demand and socioeconomic attributes through Mixed Logit models 32 5.4 Mixed Logit model and interaction between age and the demand for the CTS 38 5.5 Demand analysis with Mixed Logit model 39 6 Final analyses and conclusions 45 6.1 Comparison between the results of the analyses 45 6.2 Conclusions 48 6.3 Answers to the research questions and future developments 52

4,784 citations

Journal ArticleDOI
TL;DR: This paper briefly reviews the main existing and potential high-value products which can be derived from microalgae and considers their commercial development with a particular focus on the various aspects which need to be considered on the path to commercialisation.
Abstract: Microalgae (including the cyanobacteria) are established commercial sources of high-value chemicals such as β-carotene, astaxanthin, docosahexaenoic acid, eicosahexaenoic acid, phycobilin pigments and algal extracts for use in cosmetics. Microalgae are also increasingly playing a role in cosmaceuticals, nutraceuticals and functional foods. In the last few years, there has been renewed interest in microalgae as commercial sources of these and other high-value compounds, driven in part by the attempts to develop commercially viable biofuels from microalgae. This paper briefly reviews the main existing and potential high-value products which can be derived from microalgae and considers their commercial development with a particular focus on the various aspects which need to be considered on the path to commercialisation, using the experience gained in the commercialisation of existing algae products. These considerations include the existing and potential market size and market characteristics of the product, competition by chemically synthesised products or by ‘natural’ compounds from other organisms such as fungi, bacteria, higher plants, etc., product quality requirements and assurance, and the legal and regulatory environment.

1,193 citations

Journal ArticleDOI
TL;DR: The present review describes the advantages of microalgae for the production of biofuels and various bioactive compounds and discusses culturing parameters.
Abstract: Microalgae have recently attracted considerable interest worldwide, due to their extensive application potential in the renewable energy, biopharmaceutical, and nutraceutical industries. Microalgae are renewable, sustainable, and economical sources of biofuels, bioactive medicinal products, and food ingredients. Several microalgae species have been investigated for their potential as value-added products with remarkable pharmacological and biological qualities. As biofuels, they are a perfect substitute to liquid fossil fuels with respect to cost, renewability, and environmental concerns. Microalgae have a significant ability to convert atmospheric CO2 to useful products such as carbohydrates, lipids, and other bioactive metabolites. Although microalgae are feasible sources for bioenergy and biopharmaceuticals in general, some limitations and challenges remain, which must be overcome to upgrade the technology from pilot-phase to industrial level. The most challenging and crucial issues are enhancing microalgae growth rate and product synthesis, dewatering algae culture for biomass production, pretreating biomass, and optimizing the fermentation process in case of algal bioethanol production. The present review describes the advantages of microalgae for the production of biofuels and various bioactive compounds and discusses culturing parameters.

1,125 citations

17 Jun 2015
TL;DR: A general standardised and practical static digestion method based on physiologically relevant conditions that can be applied for various endpoints, which may be amended to accommodate further specific requirements, is proposed.
Abstract: Simulated gastro-intestinal digestion is widely employed in many fields of food and nutritional sciences, as conducting human trials are often costly, resource intensive, and ethically disputable. As a consequence, in vitro alternatives that determine endpoints such as the bioaccessibility of nutrients and non-nutrients or the digestibility of macronutrients (e.g. lipids, proteins and carbohydrates) are used for screening and building new hypotheses. Various digestion models have been proposed, often impeding the possibility to compare results across research teams. For example, a large variety of enzymes from different sources such as of porcine, rabbit or human origin have been used, differing in their activity and characterization. Differences in pH, mineral type, ionic strength and digestion time, which alter enzyme activity and other phenomena, may also considerably alter results. Other parameters such as the presence of phospholipids, individual enzymes such as gastric lipase and digestive emulsifiers vs. their mixtures (e.g. pancreatin and bile salts), and the ratio of food bolus to digestive fluids, have also been discussed at length. In the present consensus paper, within the COST Infogest network, we propose a general standardised and practical static digestion method based on physiologically relevant conditions that can be applied for various endpoints, which may be amended to accommodate further specific requirements. A frameset of parameters including the oral, gastric and small intestinal digestion are outlined and their relevance discussed in relation to available in vivo data and enzymes. This consensus paper will give a detailed protocol and a line-by-line, guidance, recommendations and justifications but also limitation of the proposed model. This harmonised static, in vitro digestion method for food should aid the production of more comparable data in the future.

806 citations