scispace - formally typeset
Search or ask a question
Author

Anamika Singh Pratiyush

Bio: Anamika Singh Pratiyush is an academic researcher from Indian Institute of Science. The author has contributed to research in topics: Dark current & Responsivity. The author has an hindex of 11, co-authored 17 publications receiving 469 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate high spectral responsivity (SR) in MBE-grown epitaxial beta-Ga2O3-based solar blind photodetectors.
Abstract: In this report, we demonstrate high spectral responsivity (SR) in MBE grown epitaxial beta-Ga2O3-based solar blind metal-semiconductor-metal (MSM) photodetectors (PD). The (-201)-oriented beta-Ga2O3 thin film was grown using plasma-assisted MBE on c-plane sapphire substrates. MSM devices fabricated with Ni/Au contacts in an interdigitated geometry were found to exhibit peak SR > 1.5 A/W at 236-240 nm at a bias of 4V with a UV to visible rejection ratio > 10(5). The devices exhibited very low dark current 10(3). These results represent the state-of-art performance for the MBE-grown beta-Ga2O3 MSM solar blind detector. Published by AIP Publishing.

191 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate high spectral responsivity (SR) in MBE grown epitaxial Ga2O3-based solar blind MSM photodetectors (PD).
Abstract: In this report, we demonstrate high spectral responsivity (SR) in MBE grown epitaxial \b{eta}-Ga2O3-based solar blind MSM photodetectors (PD). (-2 0 1)-oriented \b{eta}-Ga2O3 thin film was grown by plasma-assisted MBE on c-plane sapphire substrates. MSM devices fabricated with Ni/Au contacts in an interdigitated geometry were found to exhibit peak SR > 1.5 A/W at 236-240 nm at a bias of 4 V with a UV to visible rejection ratio > 105. The devices exhibited very low dark current 103. These results represent the state-of-art performance for MBE-grown \b{eta}-Ga2O3 MSM solar blind detector.

135 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate zero-bias spectral responsivity in MBE-grown β-Ga2O3 planar UV-C detector with good linearity up to optical power density of 4.6 mW cm−2.
Abstract: We demonstrate zero-bias spectral responsivity in MBE-grown β-Ga2O3 planar UV-C detector with good linearity up to optical power density of 4.6 mW cm−2. Devices with asymmetrical metal contacts were realized on 150 nm thick β-Ga2O3 films on sapphire. The device exhibited a spectral responsivity of 1.4 mA W−1 at 255 nm under zero-bias condition, dark current <10 nA at 15 V and UV-to-visible rejection ratio ~105 at 5 V. The demonstrated UV-C detector exhibited an estimated high detectivity of 2.0 × 1012 Jones at 1 V and were found to be very stable and repeatable, suggesting its potential use for focal plane arrays.

65 citations

Journal ArticleDOI
TL;DR: In this article, a visible-blind, deep-UV detector with a GaN-based heterostructure as the substrate was demonstrated on III-nitride epi-layers using the microwave irradiation technique.
Abstract: We report on the deposition of Ga2O3 on III-nitride epi-layers using the microwave irradiation technique. We also report on the demonstration of a Ga2O3 device: a visible-blind, deep-UV detector, with a GaN-based heterostructure as the substrate. The film deposited in the solution medium, at <200 °C, using a metalorganic precursor, was nanocrystalline. XRD confirms that the as-deposited film, when annealed at high temperature, turns to polycrystalline β−Ga2O3. SEM shows the as-deposited film to be uniform, with a surface roughness of 4–5 nm, as revealed by AFM. Interdigitated metal-semiconductor-metal devices with Ni/Au contact exhibited a peak spectral response at 230 nm and a good visible rejection ratio. This demonstration of a deep-UV detector on the β−Ga2O3/III-nitride stack is expected to open up possibilities of functional and physical integration of β−Ga2O3 and GaN material families towards enabling next-generation high-performance devices by exciting band and heterostructure engineering.

47 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate high performance vertical solar-blind Schottky photodetectors on MBE-grown homoepitaxial (010)-oriented Ga2O3 films.
Abstract: In this letter, we demonstrate high-performance vertical solar-blind Schottky photodetectors on MBE-grown homoepitaxial (010)-oriented $\beta $ -Ga2O3 films. The structure, consisting of (100 nm) $\beta $ -Ga2O3/(60 nm) $\text{n}^{++} \beta $ -Ga2O3, was grown on a Fe-doped insulating (010) $\beta $ -Ga2O3 substrate. Ni/Au and indium were used as the Schottky and Ohmic contacts, respectively. The devices exhibited a rectification ratio of ~107 with turn-on voltage ~1 V and an ideality factor of 1.31. The extracted Schottky barrier height was 1.4 eV. The photodetectors showed low dark current of 0.3 nA at 5 V with a photo-to-dark current ratio of ~102 at 0 V. The devices exhibited a zero-bias responsivity of 4 mA/W at 254 nm corresponding to an external quantum efficiency ~3 %, with a UV-to-visible rejection ratio >103, showing true solar-blind operation. The transient response of the devices indicated rise/fall times of ~100 ms. Temperature-dependent current–voltage characteristics agree with the thermionic emission model.

45 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed in this article.
Abstract: Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (e) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

1,535 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the applications of inorganic ultrawide-bandgap (UWBG) semiconductors for solar-blind DUV light detection in the past several decades is presented.
Abstract: Due to its significant applications in many relevant fields, light detection in the solar-blind deep-ultraviolet (DUV) wavelength region is a subject of great interest for both scientific and industrial communities. The rapid advances in preparing high-quality ultrawide-bandgap (UWBG) semiconductors have enabled the realization of various high-performance DUV photodetectors (DUVPDs) with different geometries, which provide an avenue for circumventing numerous disadvantages in traditional DUV detectors. This article presents a comprehensive review of the applications of inorganic UWBG semiconductors for solar-blind DUV light detection in the past several decades. Different kinds of DUVPDs, which are based on varied UWBG semiconductors including Ga2O3, MgxZn1−xO, III-nitride compounds (AlxGa1−xN/AlN and BN), diamond, etc., and operate on different working principles, are introduced and discussed systematically. Some emerging techniques to optimize device performance are addressed as well. Finally, the existing techniques are summarized and future challenges are proposed in order to shed light on development in this critical research field.

309 citations

Journal ArticleDOI
TL;DR: A comprehensive review of solar-blind photodetectors based on gallium oxide (Ga2O3) materials in various forms of bulk single crystal, epitaxial films, nanostructures, and their ternary alloys is presented in this paper.
Abstract: Solar-blind photodetectors are of great interest to a wide range of industrial, civil, environmental, and biological applications. As one of the emerging ultrawide-bandgap semiconductors, gallium oxide (Ga2O3) exhibits unique advantages over other wide-bandgap semiconductors, especially in developing high-performance solar-blind photodetectors. This paper comprehensively reviews the latest progresses of solar-blind photodetectors based on Ga2O3 materials in various forms of bulk single crystal, epitaxial films, nanostructures, and their ternary alloys. The basic working principles of photodetectors and the fundamental properties and synthesis of Ga2O3, as well as device processing developments, have been briefly summarized. A special focus is to address the physical mechanism for commonly observed huge photoconductive gains. Benefitting from the rapid development in material epitaxy and device processes, Ga2O3-based solar-blind detectors represent to date one of the most prospective solutions for UV detection technology towards versatile applications.

306 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review on Ga2O3-based solar-blind UV photodetectors is provided, with a detailed introduction of the developmental process of material growth methods and device manufacturing in the past decade.
Abstract: In recent years, solar-blind ultraviolet (UV) photodetectors have attracted significant attention from researchers in the field of semiconductor devices due to their indispensable properties in the fields of high-temperature event monitoring, anti-terrorism, security and ad hoc network communication. As an important member of the third-generation semiconductors, β-Ga2O3 is considered to be one of the most promising candidates for solar-blind UV detectors due to its ultra-wide band gap (∼4.9 eV), economic efficiency, high radiation resistance and excellent chemical and thermal stability. Herein, we provide a comprehensive review on Ga2O3-based solar-blind UV photodetectors, with a detailed introduction of the developmental process of material growth methods and device manufacturing in the past decade. We classify the currently reported Ga2O3-based solar-blind UV photodetectors (mainly including photoconductive detectors, heterogeneous PN junction detectors and Schottky junction detectors) and summarize their respective superiorities and potentials for improvement. Finally, considering the actual application requirements, we put forward some meaningful suggestions, including energy band engineering and homogeneous epitaxy, for the future development of Ga2O3 material growth and device manufacturing.

293 citations

Journal ArticleDOI
TL;DR: In this paper, a review of β-Ga2O3 at the research level that spans from the material preparation through characterization to final devices is presented, including material preparation (bulk crystals, epi-layers, surfaces), an exploration of optical, electrical, thermal and mechanical properties, as well as device design / fabrication with resulted functionality suitable for different fields of applications.
Abstract: β-Ga2O3 is an emerging, ultra-wide bandgap (energy gap of 4.85 eV) transparent semiconducting oxide (TSO), which attracted recently much scientific and technological attention. Unique properties of that compound combined with its advanced development in growth and characterization place β-Ga2O3 in the frontline of future applications in electronics (Schottky barrier diodes, field-effect transistors), optoelectronics (solar- and visible-blind photodetectors, flame detectors, light emitting diodes), and sensing systems (gas sensors, nuclear radiation detectors). A capability of growing large bulk single crystals directly from the melt and epi-layers by a diversity of epitaxial techniques, as well as explored material properties and underlying physics, define a solid background for a device fabrication, which, indeed, has been boosted in recent years. This required, however, enormous efforts in different areas of science and technology that constitutes a chain linking together engineering, metrology and theory. The present review includes material preparation (bulk crystals, epi-layers, surfaces), an exploration of optical, electrical, thermal and mechanical properties, as well as device design / fabrication with resulted functionality suitable for different fields of applications. The review summarizes all of these aspects of β-Ga2O3 at the research level that spans from the material preparation through characterization to final devices.

242 citations