scispace - formally typeset
Search or ask a question
Author

Anand Gnanadesikan

Bio: Anand Gnanadesikan is an academic researcher from Johns Hopkins University. The author has contributed to research in topics: Climate model & Ocean current. The author has an hindex of 47, co-authored 135 publications receiving 13602 citations. Previous affiliations of Anand Gnanadesikan include National Oceanic and Atmospheric Administration & Woods Hole Oceanographic Institution.


Papers
More filters
Journal ArticleDOI
29 Sep 2005-Nature
TL;DR: 13 models of the ocean–carbon cycle are used to assess calcium carbonate saturation under the IS92a ‘business-as-usual’ scenario for future emissions of anthropogenic carbon dioxide and indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.
Abstract: Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms—such as corals and some plankton—will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean–carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.

4,244 citations

Journal ArticleDOI
TL;DR: In this paper, the formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described and two versions of the coupled model are described.
Abstract: The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved. Two versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2° latitude × 2.5° longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1° in latitude and longitude, wi...

1,711 citations

Journal ArticleDOI
26 Mar 1999-Science
TL;DR: In this article, a simple theory for the large-scale oceanic circulation is developed, relating pycnocline depth, Northern Hemisphere sinking, and low-latitude upwelling to pyncocline diffusivity and Southern Ocean winds and eddies.
Abstract: A simple theory for the large-scale oceanic circulation is developed, relating pycnocline depth, Northern Hemisphere sinking, and low-latitude upwelling to pycnocline diffusivity and Southern Ocean winds and eddies. The results show that Southern Ocean processes help maintain the global ocean structure and that pycnocline diffusion controls low-latitude upwelling.

469 citations

Journal ArticleDOI
TL;DR: The Modeling Eddies in the Southern Ocean (MESO) project uses numerical sensitivity studies to examine the role played by Southern Ocean winds and eddies in determining the density structure of the global ocean and the magnitude and structure of global overturning circulation as discussed by the authors.
Abstract: The Modeling Eddies in the Southern Ocean (MESO) project uses numerical sensitivity studies to examine the role played by Southern Ocean winds and eddies in determining the density structure of the global ocean and the magnitude and structure of the global overturning circulation. A hemispheric isopycnal-coordinate ocean model (which avoids numerical diapycnal diffusion) with realistic geometry is run with idealized forcing at a range of resolutions from coarse (2°) to eddy-permitting (1/6°). A comparison of coarse resolutions with fine resolutions indicates that explicit eddies affect both the structure of the overturning and the response of the overturning to wind stress changes. While the presence of resolved eddies does not greatly affect the prevailing qualitative picture of the ocean circulation, it alters the overturning cells involving the Southern Ocean transformation of dense deep waters and light waters of subtropical origin into intermediate waters. With resolved eddies, the surface-t...

459 citations

Journal ArticleDOI
TL;DR: In this paper, the oceanic cycles of organic carbon, silicon, and calcium carbonate were synthesized based on satellite-based primary production and continued with conversion of primary production to sinking particle flux, penetration of particle flux to the deep sea, and accumulation in sediments.
Abstract: [1] We present a new synthesis of the oceanic cycles of organic carbon, silicon, and calcium carbonate. Our calculations are based on a series of algorithms starting with satellite-based primary production and continuing with conversion of primary production to sinking particle flux, penetration of particle flux to the deep sea, and accumulation in sediments. Regional and global budgets from this synthesis highlight the potential importance of shelves and near-shelf regions for carbon burial. While a high degree of uncertainty remains, this analysis suggests that shelves, less than 50 m water depths accounting for 2% of the total ocean area, may account for 48% of the global flux of organic carbon to the seafloor. Our estimates of organic carbon and nitrogen flux are in generally good agreement with previous work while our estimates for CaCO3 and SiO2 fluxes are lower than recent work. Interannual variability in particle export fluxes is found to be relatively small compared to intra-annual variability over large domains with the single exception of the dominating role of El Nino-Southern Oscillation variability in the central tropical Pacific. Comparison with available sediment-based syntheses of benthic remineralization and burial support the recent theory of mineral protection of organic carbon flux through the deep ocean, pointing to lithogenic material as an important carrier phase of organic carbon to the deep seafloor. This work suggests that models which exclude the role of lithogenic material would underestimate the penetration of POC to the deep seafloor by approximately 16–51% globally, and by a much larger fraction in areas with low productivity. Interestingly, atmospheric dust can only account for 31% of the total lithogenic flux and 42% of the lithogenically associated POC flux, implying that a majority of this material is riverine or directly erosional in origin.

406 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a new global map of climate using the Koppen-Geiger system based on a large global data set of long-term monthly precipitation and temperature station time series is presented.
Abstract: Although now over 100 years old, the classification of climate originally formulated by Wladimir Koppen and modified by his collaborators and successors, is still in widespread use. It is widely used in teaching school and undergraduate courses on climate. It is also still in regular use by researchers across a range of disciplines as a basis for climatic regionalisation of variables and for assessing the output of global climate models. Here we have produced a new global map of climate using the Koppen-Geiger system based on a large global data set of long-term monthly precipitation and temperature station time series. Climatic variables used in the Koppen-Geiger system were calculated at each station and interpolated between stations using a two-dimensional (latitude and longitude) thin-plate spline with tension onto a 0.1°×0.1° grid for each continent. We discuss some problems in dealing with sites that are not uniquely classified into one climate type by the Koppen-Geiger system and assess the outcomes on a continent by continent basis. Globally the most common climate type by land area is BWh (14.2%, Hot desert) followed by Aw (11.5%, Tropical savannah). The updated world Koppen-Geiger climate map is freely available electronically in the Supplementary Material Section.

10,518 citations

Journal ArticleDOI
TL;DR: Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change.
Abstract: Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change Tropical coral reefs and amphibians have been most negatively affected Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming Evolutionary adaptations to warmer conditions have occurred in the interiors of species’ ranges, and resource use and dispersal have evolved rapidly at expanding range margins Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level

7,657 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a geographical information system to identify Koppen's climate types based on monthly temperature and rainfall data from 2,950 weather stations in Brazil, and the results are presented as maps, graphs, diagrams and tables, allowing users to interpret the occurrence of climate types in Brazil.
Abstract: Koppen's climate classification remains the most widely used system by geographical and climatological societies across the world, with well recognized simple rules and climate symbol letters. In Brazil, climatology has been studied for more than 140 years, and among the many proposed methods Koppen 0 s system remains as the most utilized. Considering Koppen's climate classification importance for Brazil (geography, biology, ecology, meteorology, hydrology, agronomy, forestry and environmental sciences), we developed a geographical information system to identify Koppen's climate types based on monthly temperature and rainfall data from 2,950 weather stations. Temperature maps were spatially described using multivariate equations that took into account the geographical coordinates and altitude; and the map resolution (100 m) was similar to the digital elevation model derived from Shuttle Radar Topography Mission. Patterns of rainfall were interpolated using kriging, with the same resolution of temperature maps. The final climate map obtained for Brazil (851,487,700 ha) has a high spatial resolution (1 ha) which allows to observe the climatic variations at the landscape level. The results are presented as maps, graphs, diagrams and tables, allowing users to interpret the occurrence of climate types in Brazil. The zones and climate types are referenced to the most important mountains, plateaus and depressions, geographical landmarks, rivers and watersheds and major cities across the country making the information accessible to all levels of users. The climate map not only showed that the A, B and C zones represent approximately 81%, 5% and 14% of the country but also allowed the identification of Koppen's climates types never reported before in Brazil.

7,134 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new approach to global sustainability in which they define planetary boundaries within which they expect that humanity can operate safely. But the proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development.
Abstract: Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere <350 ppm and/or a maximum change of +1 W m-2 in radiative forcing); ocean acidification (mean surface seawater saturation state with respect to aragonite ≥ 80% of pre-industrial levels); stratospheric ozone (<5% reduction in O3 concentration from pre-industrial level of 290 Dobson Units); biogeochemical nitrogen (N) cycle (limit industrial and agricultural fixation of N2 to 35 Tg N yr-1) and phosphorus (P) cycle (annual P inflow to oceans not to exceed 10 times the natural background weathering of P); global freshwater use (<4000 km3 yr-1 of consumptive use of runoff resources); land system change (<15% of the ice-free land surface under cropland); and the rate at which biological diversity is lost (annual rate of <10 extinctions per million species). The two additional planetary boundaries for which we have not yet been able to determine a boundary level are chemical pollution and atmospheric aerosol loading. We estimate that humanity has already transgressed three planetary boundaries: for climate change, rate of biodiversity loss, and changes to the global nitrogen cycle. Planetary boundaries are interdependent, because transgressing one may both shift the position of other boundaries or cause them to be transgressed. The social impacts of transgressing boundaries will be a function of the social-ecological resilience of the affected societies. Our proposed boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure of avoiding major human-induced environmental change on a global scale.

4,771 citations

Journal ArticleDOI
TL;DR: The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010 as mentioned in this paper, which was designed and executed as a global, high-resolution coupled atmosphere-ocean-land surface-sea ice system to provide the best estimate of the state of these coupled domains over this period.
Abstract: The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010. The CFSR was designed and executed as a global, high-resolution coupled atmosphere–ocean–land surface–sea ice system to provide the best estimate of the state of these coupled domains over this period. The current CFSR will be extended as an operational, real-time product into the future. New features of the CFSR include 1) coupling of the atmosphere and ocean during the generation of the 6-h guess field, 2) an interactive sea ice model, and 3) assimilation of satellite radiances by the Gridpoint Statistical Interpolation (GSI) scheme over the entire period. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels extending from the surface to 0.26 hPa. The global ocean's latitudinal spacing is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels to a depth of 4737 m. The global land surface model has four soil levels and the global sea ice m...

4,520 citations