scispace - formally typeset
Search or ask a question
Author

Anand Swaroop

Bio: Anand Swaroop is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Retinitis pigmentosa & Retinal degeneration. The author has an hindex of 89, co-authored 508 publications receiving 43170 citations. Previous affiliations of Anand Swaroop include Vision-Sciences, Inc. & Yale University.


Papers
More filters
Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

01 Oct 2015
TL;DR: The 1000 Genomes Project as mentioned in this paper provided a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and reported the completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole genome sequencing, deep exome sequencing and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

3,247 citations

Journal ArticleDOI
TL;DR: Improvements to imputation machinery are described that reduce computational requirements by more than an order of magnitude with no loss of accuracy in comparison to standard imputation tools.
Abstract: Christian Fuchsberger, Goncalo Abecasis and colleagues describe a new web-based imputation service that enables rapid imputation of large numbers of samples and allows convenient access to large reference panels of sequenced individuals. Their state space reduction provides a computationally efficient solution for genotype imputation with no loss in imputation accuracy.

2,556 citations

Journal ArticleDOI
Shane A. McCarthy1, Sayantan Das2, Warren W. Kretzschmar3, Olivier Delaneau4, Andrew R. Wood5, Alexander Teumer6, Hyun Min Kang2, Christian Fuchsberger2, Petr Danecek1, Kevin Sharp3, Yang Luo1, C Sidore7, Alan Kwong2, Nicholas J. Timpson8, Seppo Koskinen, Scott I. Vrieze9, Laura J. Scott2, He Zhang2, Anubha Mahajan3, Jan H. Veldink, Ulrike Peters10, Ulrike Peters11, Carlos N. Pato12, Cornelia M. van Duijn13, Christopher E. Gillies2, Ilaria Gandin14, Massimo Mezzavilla, Arthur Gilly1, Massimiliano Cocca14, Michela Traglia, Andrea Angius7, Jeffrey C. Barrett1, D.I. Boomsma15, Kari Branham2, Gerome Breen16, Gerome Breen17, Chad M. Brummett2, Fabio Busonero7, Harry Campbell18, Andrew T. Chan19, Sai Chen2, Emily Y. Chew20, Francis S. Collins20, Laura J Corbin8, George Davey Smith8, George Dedoussis21, Marcus Dörr6, Aliki-Eleni Farmaki21, Luigi Ferrucci20, Lukas Forer22, Ross M. Fraser2, Stacey Gabriel23, Shawn Levy, Leif Groop24, Leif Groop25, Tabitha A. Harrison10, Andrew T. Hattersley5, Oddgeir L. Holmen26, Kristian Hveem26, Matthias Kretzler2, James Lee27, Matt McGue28, Thomas Meitinger29, David Melzer5, Josine L. Min8, Karen L. Mohlke30, John B. Vincent31, Matthias Nauck6, Deborah A. Nickerson11, Aarno Palotie19, Aarno Palotie23, Michele T. Pato12, Nicola Pirastu14, Melvin G. McInnis2, J. Brent Richards16, J. Brent Richards32, Cinzia Sala, Veikko Salomaa, David Schlessinger20, Sebastian Schoenherr22, P. Eline Slagboom33, Kerrin S. Small16, Tim D. Spector16, Dwight Stambolian34, Marcus A. Tuke5, Jaakko Tuomilehto, Leonard H. van den Berg, Wouter van Rheenen, Uwe Völker6, Cisca Wijmenga35, Daniela Toniolo, Eleftheria Zeggini1, Paolo Gasparini14, Matthew G. Sampson2, James F. Wilson18, Timothy M. Frayling5, Paul I.W. de Bakker36, Morris A. Swertz35, Steven A. McCarroll19, Charles Kooperberg10, Annelot M. Dekker, David Altshuler, Cristen J. Willer2, William G. Iacono28, Samuli Ripatti24, Nicole Soranzo1, Nicole Soranzo27, Klaudia Walter1, Anand Swaroop20, Francesco Cucca7, Carl A. Anderson1, Richard M. Myers, Michael Boehnke2, Mark I. McCarthy3, Mark I. McCarthy37, Richard Durbin1, Gonçalo R. Abecasis2, Jonathan Marchini3 
TL;DR: A reference panel of 64,976 human haplotypes at 39,235,157 SNPs constructed using whole-genome sequence data from 20 studies of predominantly European ancestry leads to accurate genotype imputation at minor allele frequencies as low as 0.1% and a large increase in the number of SNPs tested in association studies.
Abstract: We describe a reference panel of 64,976 human haplotypes at 39,235,157 SNPs constructed using whole-genome sequence data from 20 studies of predominantly European ancestry. Using this resource leads to accurate genotype imputation at minor allele frequencies as low as 0.1% and a large increase in the number of SNPs tested in association studies, and it can help to discover and refine causal loci. We describe remote server resources that allow researchers to carry out imputation and phasing consistently and efficiently.

2,149 citations

Shane A. McCarthy, Sayantan Das, Warren W. Kretzschmar, Olivier Delaneau, Andrew R. Wood, Alexander Teumer, Hyun Min Kang, Christian Fuchsberger, Petr Danecek, Kevin Sharp, Yang Luo, Carlo Sidorel, Alan Kwong, Nicholas J. Timpson, Seppo Koskinen, Scott I. Vrieze, Laura J. Scott, He Zhang, Anubha Mahajan, Jan H. Veldink, Ulrike Peters, Carlos N. Pato, Cornelia M. van Duijn, Christopher E. Gillies, Ilaria Gandin, Massimo Mezzavilla, Arthur Gilly, Massimiliano Cocca, Michela Traglia, Andrea Angius, Jeffrey C. Barrett, D.I. Boomsma, Kari Branham, Gerome Breen, Chad M. Brummett, Fabio Busonero, Harry Campbell, Andrew T. Chan, Sai Che, Emily Y. Chew, Francis S. Collins, Laura J Corbin, George Davey Smith, George Dedoussis, Marcus Dörr, Aliki-Eleni Farmaki, Luigi Ferrucci, Lukas Forer, Ross M. Fraser, Stacey Gabriel, Shawn Levy, Leif Groop, Tabitha A. Harrison, Andrew T. Hattersley, Oddgeir L. Holmen, Kristian Hveem, Matthias Kretzler, James Lee, Matt McGue, Thomas Meitinger, David Melzer, Josine L. Min, Karen L. Mohlke, John B. Vincent, Matthias Nauck, Deborah A. Nickerson, Aarno Palotie, Michele T. Pato, Nicola Pirastu, Melvin G. McInnis, J. Brent Richards, Cinzia Sala, Veikko Salomaa, David Schlessinger, Sebastian Schoenherr, P. Eline Slagboom, Kerrin S. Small, Tim D. Spector, Dwight Stambolian, Marcus A. Tuke, Jaakko Tuomilehto, Leonard H. van den Berg, Wouter van Rheenen, Uwe Völker, Cisca Wijmenga, Daniela Toniolo, Eleftheria Zeggini, Paolo Gasparini, Matthew G. Sampson, James F. Wilson, Timothy M. Frayling, Paul I.W. de Bakker, Morris A. Swertz, Steven A. McCarroll, Charles Kooperberg, Annelot M. Dekker, David Altshuler, Cristen J. Willer, William G. Iacono, Samuli Ripatti, Nicole Soranzo, Klaudia Walter, Anand Swaroop, Francesco Cucca, Carl A. Anderson, Richard M. Myers, Michael Boehnke, Mark I. McCarthy, Richard Durbin, Gonçalo R. Abecasis, Jonathan Marchini 
01 Jan 2016
TL;DR: In this article, a reference panel of 64,976 human haplotypes at 39,235,157 SNPs constructed using whole-genome sequence data from 20 studies of predominantly European ancestry is presented.
Abstract: We describe a reference panel of 64,976 human haplotypes at 39,235,157 SNPs constructed using whole-genome sequence data from 20 studies of predominantly European ancestry. Using this resource leads to accurate genotype imputation at minor allele frequencies as low as 0.1% and a large increase in the number of SNPs tested in association studies, and it can help to discover and refine causal loci. We describe remote server resources that allow researchers to carry out imputation and phasing consistently and efficiently.

1,261 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

Journal ArticleDOI
Monkol Lek, Konrad J. Karczewski1, Konrad J. Karczewski2, Eric Vallabh Minikel1, Eric Vallabh Minikel2, Kaitlin E. Samocha, Eric Banks2, Timothy Fennell2, Anne H. O’Donnell-Luria2, Anne H. O’Donnell-Luria1, Anne H. O’Donnell-Luria3, James S. Ware, Andrew J. Hill4, Andrew J. Hill1, Andrew J. Hill2, Beryl B. Cummings1, Beryl B. Cummings2, Taru Tukiainen2, Taru Tukiainen1, Daniel P. Birnbaum2, Jack A. Kosmicki, Laramie E. Duncan1, Laramie E. Duncan2, Karol Estrada2, Karol Estrada1, Fengmei Zhao2, Fengmei Zhao1, James Zou2, Emma Pierce-Hoffman2, Emma Pierce-Hoffman1, Joanne Berghout5, David Neil Cooper6, Nicole A. Deflaux7, Mark A. DePristo2, Ron Do, Jason Flannick2, Jason Flannick1, Menachem Fromer, Laura D. Gauthier2, Jackie Goldstein2, Jackie Goldstein1, Namrata Gupta2, Daniel P. Howrigan2, Daniel P. Howrigan1, Adam Kiezun2, Mitja I. Kurki1, Mitja I. Kurki2, Ami Levy Moonshine2, Pradeep Natarajan, Lorena Orozco, Gina M. Peloso2, Gina M. Peloso1, Ryan Poplin2, Manuel A. Rivas2, Valentin Ruano-Rubio2, Samuel A. Rose2, Douglas M. Ruderfer8, Khalid Shakir2, Peter D. Stenson6, Christine Stevens2, Brett Thomas1, Brett Thomas2, Grace Tiao2, María Teresa Tusié-Luna, Ben Weisburd2, Hong-Hee Won9, Dongmei Yu, David Altshuler10, David Altshuler2, Diego Ardissino, Michael Boehnke11, John Danesh12, Stacey Donnelly2, Roberto Elosua, Jose C. Florez2, Jose C. Florez1, Stacey Gabriel2, Gad Getz2, Gad Getz1, Stephen J. Glatt13, Christina M. Hultman14, Sekar Kathiresan, Markku Laakso15, Steven A. McCarroll2, Steven A. McCarroll1, Mark I. McCarthy16, Mark I. McCarthy17, Dermot P.B. McGovern18, Ruth McPherson19, Benjamin M. Neale1, Benjamin M. Neale2, Aarno Palotie, Shaun Purcell8, Danish Saleheen20, Jeremiah M. Scharf, Pamela Sklar, Patrick F. Sullivan14, Patrick F. Sullivan21, Jaakko Tuomilehto22, Ming T. Tsuang23, Hugh Watkins16, Hugh Watkins17, James G. Wilson24, Mark J. Daly2, Mark J. Daly1, Daniel G. MacArthur1, Daniel G. MacArthur2 
18 Aug 2016-Nature
TL;DR: The aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC) provides direct evidence for the presence of widespread mutational recurrence.
Abstract: Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.

8,758 citations

Journal ArticleDOI
TL;DR: This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Abstract: For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phag...

5,873 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations