scispace - formally typeset
Search or ask a question
Author

Anand V. Sastry

Bio: Anand V. Sastry is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Biology & Transcriptome. The author has an hindex of 15, co-authored 54 publications receiving 1311 citations. Previous affiliations of Anand V. Sastry include University of California & University of California, Berkeley.
Topics: Biology, Transcriptome, Medicine, Gene, Regulon

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: Recon3D is presented, a computational resource that includes three-dimensional metabolite and protein structure data and enables integrated analyses of metabolic functions in humans and is used to functionally characterize mutations associated with disease, and identify metabolic response signatures that are caused by exposure to certain drugs.
Abstract: Genome-scale network reconstructions have helped uncover the molecular basis of metabolism. Here we present Recon3D, a computational resource that includes three-dimensional (3D) metabolite and protein structure data and enables integrated analyses of metabolic functions in humans. We use Recon3D to functionally characterize mutations associated with disease, and identify metabolic response signatures that are caused by exposure to certain drugs. Recon3D represents the most comprehensive human metabolic network model to date, accounting for 3,288 open reading frames (representing 17% of functionally annotated human genes), 13,543 metabolic reactions involving 4,140 unique metabolites, and 12,890 protein structures. These data provide a unique resource for investigating molecular mechanisms of human metabolism. Recon3D is available at http://vmh.life.

454 citations

Journal ArticleDOI
TL;DR: The iML1515 knowledgebase is linked to 1,515 protein structures to provide an integrated modeling framework bridging systems and structural biology and is applied to build metabolic models of E. coli human gut microbiome strains from metagenomic sequencing data.
Abstract: iML1515, a knowledgebase that computes Escherichia coli traits To the Editor: Extracting knowledge from the many types of big data produced by high-throughput methods remains a challenge, even when data are from Escherichia coli, the best characterized bacterial species. Here, we present iML1515, the most complete genome-scale reconstruction of the metabolic network in E. coli K-12 MG1655 to date, and we demonstrate how it can be used to address this challenge. Enabling analysis of several data types, including transcriptomes, proteomes, and metabolomes, iML1515 accounts for 1,515 open reading frames and 2,719 metabolic reactions involving 1,192 unique metabolites. The iML1515 knowledgebase is linked to 1,515 protein structures to provide an integrated modeling framework bridging systems and structural biology. We apply iML1515 to build metabolic models of E. coli human gut microbiome strains from metagenomic sequencing data. We then use iML1515 to build metabolic models for E. coli clinical isolates and predict their metabolic capabilities. Finally, we use iML1515 to carry out a comparative structural proteome analysis of 1,122 E. coli strains and identify multi-strain sequence variations.

364 citations

Journal ArticleDOI
TL;DR: Advanced data integration methods for multi-level analysis of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data are developed, showing that pairwise integration of primary omics data reveals regularities that tie cellular processes together in Escherichia coli.
Abstract: Rapid growth in size and complexity of biological data sets has led to the 'Big Data to Knowledge' challenge We develop advanced data integration methods for multi-level analysis of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data First, we show that pairwise integration of primary omics data reveals regularities that tie cellular processes together in Escherichia coli: the number of protein molecules made per mRNA transcript and the number of ribosomes required per translated protein molecule Second, we show that genome-scale models, based on genomic and bibliomic data, enable quantitative synchronization of disparate data types Integrating omics data with models enabled the discovery of two novel regularities: condition invariant in vivo turnover rates of enzymes and the correlation of protein structural motifs and translational pausing These regularities can be formally represented in a computable format allowing for coherent interpretation and prediction of fitness and selection that underlies cellular physiology

139 citations

Journal ArticleDOI
TL;DR: Unsupervised machine learning is applied to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets and finds that most gene sets represent the effects of specific transcriptional regulators.
Abstract: Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene expression. A useful description of the TRN would decompose the transcriptome into targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets. We show that 61 of these transcriptomic signals represent the effects of currently characterized transcriptional regulators. Condition-specific activation of signals is validated by exposure of E. coli to new environmental conditions. The resulting decomposition of the transcriptome provides: a mechanistic, systems-level, network-based explanation of responses to environmental and genetic perturbations; a guide to gene and regulator function discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken together, our results show that signal summation describes the composition of a model prokaryotic transcriptome.

125 citations

Journal ArticleDOI
TL;DR: The misconception that a gene in E. coli whose primary name starts with ‘y’ is unannotated is resolved, and the value of the y-ome is discussed for systematic improvement ofE.
Abstract: Experimental studies of Escherichia coli K-12 MG1655 often implicate poorly annotated genes in cellular phenotypes. However, we lack a systematic understanding of these genes. How many are there? What information is available for them? And what features do they share that could explain the gap in our understanding? Efforts to build predictive, whole-cell models of E. coli inevitably face this knowledge gap. We approached these questions systematically by assembling annotations from the knowledge bases EcoCyc, EcoGene, UniProt and RegulonDB. We identified the genes that lack experimental evidence of function (the 'y-ome') which include 1600 of 4623 unique genes (34.6%), of which 111 have absolutely no evidence of function. An additional 220 genes (4.7%) are pseudogenes or phantom genes. y-ome genes tend to have lower expression levels and are enriched in the termination region of the E. coli chromosome. Where evidence is available for y-ome genes, it most often points to them being membrane proteins and transporters. We resolve the misconception that a gene in E. coli whose primary name starts with 'y' is unannotated, and we discuss the value of the y-ome for systematic improvement of E. coli knowledge bases and its extension to other organisms.

102 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

01 Jan 2013
TL;DR: In this article, the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs) was described, including several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA.
Abstract: We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.

2,616 citations

01 Mar 2001
TL;DR: Using singular value decomposition in transforming genome-wide expression data from genes x arrays space to reduced diagonalized "eigengenes" x "eigenarrays" space gives a global picture of the dynamics of gene expression, in which individual genes and arrays appear to be classified into groups of similar regulation and function, or similar cellular state and biological phenotype.
Abstract: ‡We describe the use of singular value decomposition in transforming genome-wide expression data from genes 3 arrays space to reduced diagonalized ‘‘eigengenes’’ 3 ‘‘eigenarrays’’ space, where the eigengenes (or eigenarrays) are unique orthonormal superpositions of the genes (or arrays). Normalizing the data by filtering out the eigengenes (and eigenarrays) that are inferred to represent noise or experimental artifacts enables meaningful comparison of the expression of different genes across different arrays in different experiments. Sorting the data according to the eigengenes and eigenarrays gives a global picture of the dynamics of gene expression, in which individual genes and arrays appear to be classified into groups of similar regulation and function, or similar cellular state and biological phenotype, respectively. After normalization and sorting, the significant eigengenes and eigenarrays can be associated with observed genome-wide effects of regulators, or with measured samples, in which these regulators are overactive or underactive, respectively.

1,815 citations

25 Apr 2017
TL;DR: This presentation is a case study taken from the travel and holiday industry and describes the effectiveness of various techniques as well as the performance of Python-based libraries such as Python Data Analysis Library (Pandas), and Scikit-learn (built on NumPy, SciPy and matplotlib).
Abstract: This presentation is a case study taken from the travel and holiday industry. Paxport/Multicom, based in UK and Sweden, have recently adopted a recommendation system for holiday accommodation bookings. Machine learning techniques such as Collaborative Filtering have been applied using Python (3.5.1), with Jupyter (4.0.6) as the main framework. Data scale and sparsity present significant challenges in the case study, and so the effectiveness of various techniques are described as well as the performance of Python-based libraries such as Python Data Analysis Library (Pandas), and Scikit-learn (built on NumPy, SciPy and matplotlib). The presentation is suitable for all levels of programmers.

1,338 citations

Journal ArticleDOI
TL;DR: Recent reorganization of RCSB PDB activities into four integrated, interdependent services is described in detail, together with tools and resources added over the past 2 years to RCSb PDB web portals in support of a ‘Structural View of Biology.’
Abstract: The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, rcsb.org), the US data center for the global PDB archive, serves thousands of Data Depositors in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without usage restrictions to more than 1 million rcsb.org Users worldwide and 600 000 pdb101.rcsb.org education-focused Users around the globe. PDB Data Depositors include structural biologists using macromolecular crystallography, nuclear magnetic resonance spectroscopy and 3D electron microscopy. PDB Data Consumers include researchers, educators and students studying Fundamental Biology, Biomedicine, Biotechnology and Energy. Recent reorganization of RCSB PDB activities into four integrated, interdependent services is described in detail, together with tools and resources added over the past 2 years to RCSB PDB web portals in support of a 'Structural View of Biology.'

827 citations