scispace - formally typeset
Search or ask a question

Showing papers by "Anand Yethiraj published in 2015"


Journal ArticleDOI
TL;DR: In this article, a micron-scale ionic microgel colloid model was established to study the single-particle kinetics in real space and real-time and tune the phase transition in a multiple-parameter space.
Abstract: The nature of solid-solid phase transformations has been a long-standing question spanning the fields of metallurgy and condensed-matter physics, with applications from metallic alloys and ceramics to modern shape-memory materials. In spite of the importance of solid-to-solid transformations in many areas of materials science and condensed-matter physics and the numerous experimental and theoretical studies, a deep understanding of the microstructural changes and the underlying kinetic mechanisms is still missing. In this work, we establish a versatile model system composed of micron-scale ionic microgel colloids, where we not only probe the single-particle kinetics in real space and real time but also tune the phase transition in a multiple-parameter space. In the presence of an imposed electric field, a face-centered cubic (FCC) crystal transforms diffusively into a body-centered tetragonal (BCT) crystal via nucleation and growth. In the reverse direction, however, the BCT phase transforms cooperatively into a long-lived metastable body-centered orthorhombic phase, which only relaxes back to the equilibrium FCC when annealed at higher temperatures. The kinetics is thus either diffusive or martensitic depending on the path, and we believe that these two path-dependent transitions provide the first real-space, particle-level insights of diffusive and martensitic transformations, respectively, in a single system.

47 citations


Journal ArticleDOI
20 Jul 2015-Langmuir
TL;DR: This analysis presents a unified strategy for comparing structural order among different colloidal crystals and establishes benchmarks for future studies, finding that translational measures are adequate for characterizing small deviations from perfect order, whereas orientation measures are more informative for polycrystalline and highly disordered crystals.
Abstract: Although there are numerous self-assembly techniques to prepare colloidal crystals, there is great variability in the methods used to characterize order and disorder in these materials. We assess different kinds of structural order from more than 70 two-dimensional microscopy images of colloidal crystals produced by many common methods, including spin-coating, dip-coating, convective assembly, electrophoretic assembly, and sedimentation. Our suite of analysis methods includes measures for both positional and orientational order. The benchmarks are two-dimensional lattices that we simulated with different degrees of controlled disorder. We find that translational measures are adequate for characterizing small deviations from perfect order, whereas orientational measures are more informative for polycrystalline and highly disordered crystals. Our analysis presents a unified strategy for comparing structural order among different colloidal crystals and establishes benchmarks for future studies.

11 citations


Journal ArticleDOI
TL;DR: In this article, the structure and dynamics in sedimentation equilibrium, in the presence of gravity, were examined via confocal microscopy, for a Brownian colloidal system with an external electric field.
Abstract: In this work, we use structure and dynamics in sedimentation equilibrium, in the presence of gravity, to examine, via confocal microscopy, a Brownian colloidal system in the presence of an external electric field. The zero field equation of state (EOS) is hard sphere without any re-scaling of particle size, and the hydrodynamic corrections to the long-time self-diffusion coefficient are quantitatively consistent with the expected value for hard spheres. Care is taken to ensure that both the dimensionless gravitational energy, which is equivalent to a Peclet number Peg, and dipolar strength Λ are of order unity. In the presence of an external electric field, anisotropic chain-chain clusters form; this cluster formation manifests itself with the appearance of a plateau in the diffusion coefficient when the dimensionless dipolar strength Λ ~ 1. The structure and dynamics of this chain-chain cluster state is examined for a monodisperse system for two particle sizes.

11 citations