scispace - formally typeset
Search or ask a question
Author

Anand Yethiraj

Bio: Anand Yethiraj is an academic researcher from St. John's University. The author has contributed to research in topics: Phase transition & Liquid crystal. The author has an hindex of 22, co-authored 72 publications receiving 2381 citations. Previous affiliations of Anand Yethiraj include University of British Columbia & Fundamental Research on Matter Institute for Atomic and Molecular Physics.


Papers
More filters
Journal ArticleDOI
TL;DR: A simple and robust method to produce large 2-dimensional and quasi-3-dimensional arrays of tunable liquid microlenses using a time varying external electric field as the only control parameter, which is useful in designing adaptive optics.
Abstract: We demonstrate a simple and robust method to produce large 2-dimensional and quasi-3-dimensional arrays of tunable liquid microlenses using a time varying external electric field as the only control parameter. With increasing frequency, the shape of the individual lensing elements (~40 μm in diameter) evolves from an oblate (lentil shaped) to a prolate (egg shaped) spheroid, thereby making the focal length a tunable quantity. Moreover, such microlenses can be spatially localized in desired configurations by patterning the electrode. This system has the advantage that it provides a large dynamic range of shape deformation (with a response time of ~30 ms for the whole range of deformation), which is useful in designing adaptive optics.

9 citations

Journal ArticleDOI
TL;DR: In this paper, a modified Savitzky-Golay filter is used to determine particle centers, particle size and crystal symmetries with sub-pixel resolution from 8-bit digital images of colloidal thin films taken with a scanning electron microscope.
Abstract: A method is presented for characterizing particle centres, particle size and crystal symmetries with sub-pixel resolution from 8-bit digital images of colloidal thin films taken with a scanning electron microscope (SEM). Digital images are converted to xyz data points by converting colour contrast to a numerical intensity. The data are then passed through a modified form of a Savitzky–Golay filter which allows particle centres to be determined. A subsequent routine is presented that, by analysing the weighted standard deviation and average intensity of the pixels along shifting rings, improves the accuracy of the detected particle centres and provides the radius of each particle. Obtaining the particle centres allows the symmetry of each particle (with respect to its neighbours) along with the mean crystal orientation to be obtained, all in one cohesive package. A key advantage of the method presented here is that it is very robust and works with both low- and high-resolution images—enabling, for example, routine quantitative analysis of SEM images. Because of the low level of user input, the method can be used to process a batch of images in order to characterize the evolution of samples.

9 citations

Journal ArticleDOI
TL;DR: In this paper, the authors observed electro-hydrodynamically driven turbulent flows at low Reynolds numbers in a two-fluid emulsion consisting of micron-scale droplets, and characterized the dynamics associated with these structures by both video imaging and a simultaneous, in situ, measurement of the time variation of the bulk Reynolds stress with a rheometer.
Abstract: We observe electro-hydrodynamically driven turbulent flows at low Reynolds numbers in a two-fluid emulsion consisting of micron-scale droplets. In the presence of electric fields, the droplets produce interacting hydrodynamic flows which result in a dynamical organization at a spatial scale much larger than the size of the individual droplets. We characterize the dynamics associated with these structures by both video imaging and a simultaneous, in situ, measurement of the time variation of the bulk Reynolds stress with a rheometer. The results display scale invariance in the energy spectra in both space and time.

9 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used 1H NMR and optical microscopy to study four solutes dissolved in samples of a binary mixture of 4-nhexyloxy-4′-cyanobiphenyl (6OCB) and 4n-n-octyloxy -4′-,cyanophrase (8OCB), which are close to the region of the phase diagram where the smectic-A (SmA) and reentrant nematic (RN) phases exist.
Abstract: 1H NMR and optical microscopy have been used to study four solutes dissolved in samples of a binary mixture of 4-n-hexyloxy-4′-cyanobiphenyl (6OCB) and 4-n-octyloxy-4′-cyanobiphenyl (8OCB) that are close to the region of the phase diagram where the smectic-A (SmA) and re-entrant nematic (RN) phases exist. Optical microscopy clearly indicates that one of the four studied samples shows the phase sequence of isotropic–nematic–SmA–RN. The derived solute order parameters were interpreted by means of two Maier–Saupe mechanisms in conjunction with the Kobayashi–McMillan theory in the case of the SmA phase. The novel feature of this study is that the nematic potential is extrapolated from the nematic to the SmA phase based on concentrations of the 6OCB–8OCB mixtures. The derived smectic order parameters for each of the studied solutes clearly show a maximum absolute magnitude near the centre of the SmA temperature range. The different partitioning of these solutes in the binary mixture is also discussed.

9 citations

Journal ArticleDOI
TL;DR: In this paper, a 19 residue antimicrobial peptide, GAD-2, was used to obtain the true hydrodynamic size of peptides with sodium dodecyl sulfate SDS micelles.
Abstract: Pulsed-field-gradient nuclear magnetic resonance (PFG-NMR) is used to obtain the true hydrodynamic size of complexes of peptides with sodium dodecyl sulfate SDS micelles. The peptide used in this study is a 19-residue antimicrobial peptide, GAD-2. Two smaller dipeptides, alanine–glycine (Ala–Gly) and tyrosine–leucine (Tyr–Leu), are used for comparison. We use PFG-NMR to simultaneously measure diffusion coefficients of both peptide and surfactant. These two inputs, as a function of SDS concentration, are then fit to a simple two species model that neglects hydrodynamic interactions between complexes. From this we obtain the fraction of free SDS, and the hydrodynamic size of complexes in a GAD-2–SDS system as a function of SDS concentration. These results are compared to those for smaller dipeptides and for peptide-free solutions. At low SDS concentrations ([SDS] ≤ 25 mM), the results self-consistently point to a GAD-2–SDS complex of fixed hydrodynamic size R = (5.5 ± 0.3) nm. At intermediate SDS concentrations (25 mM < [SDS] < 60 mM), the apparent size of a GAD-2–SDS complex shows almost a factor of two increase without a significant change in surfactant-to-peptide ratio within a complex, most likely implying an increase in the number of peptides in a complex. For peptide-free solutions, the self-diffusion coefficients of SDS with and without buffer are significantly different at low SDS concentrations but merge above [SDS] = 60 mM. We find that in order to obtain unambiguous information about the hydrodynamic size of a peptide-surfactant complex from diffusion measurements, experiments must be carried out at or below [SDS] = 25 mM.

8 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work argues for a conceptual framework for these new building blocks based on anisotropy attributes and discusses the prognosis for future progress in exploiting an isotropy for materials design and assembly.
Abstract: A revolution in novel nanoparticles and colloidal building blocks has been enabled by recent breakthroughs in particle synthesis These new particles are poised to become the ‘atoms’ and ‘molecules’ of tomorrow’s materials if they can be successfully assembled into useful structures Here, we discuss the recent progress made in the synthesis of nanocrystals and colloidal particles and draw analogies between these new particulate building blocks and better-studied molecules and supramolecular objects We argue for a conceptual framework for these new building blocks based on anisotropy attributes and discuss the prognosis for future progress in exploiting anisotropy for materials design and assembly

2,558 citations

Journal ArticleDOI
20 Jan 2011-Nature
TL;DR: This paper shows how colloidal spheres can be induced to self-assemble into a complex predetermined colloidal crystal—in this case a colloidal kagome lattice—through decoration of their surfaces with a simple pattern of hydrophobic domains, and encodes the target supracolloidal architecture.
Abstract: A challenging goal in materials chemistry and physics is spontaneously to form intended superstructures from designed building blocks. In fields such as crystal engineering and the design of porous materials, this typically involves building blocks of organic molecules, sometimes operating together with metallic ions or clusters. The translation of such ideas to nanoparticles and colloidal-sized building blocks would potentially open doors to new materials and new properties, but the pathways to achieve this goal are still undetermined. Here we show how colloidal spheres can be induced to self-assemble into a complex predetermined colloidal crystal-in this case a colloidal kagome lattice-through decoration of their surfaces with a simple pattern of hydrophobic domains. The building blocks are simple micrometre-sized spheres with interactions (electrostatic repulsion in the middle, hydrophobic attraction at the poles, which we call 'triblock Janus') that are also simple, but the self-assembly of the spheres into an open kagome structure contrasts with previously known close-packed periodic arrangements of spheres. This open network is of interest for several theoretical reasons. With a view to possible enhanced functionality, the resulting lattice structure possesses two families of pores, one that is hydrophobic on the rims of the pores and another that is hydrophilic. This strategy of 'convergent' self-assembly from easily fabricated colloidal building blocks encodes the target supracolloidal architecture, not in localized attractive spots but instead in large redundantly attractive regions, and can be extended to form other supracolloidal networks.

1,125 citations

Journal ArticleDOI
25 Nov 2004-Nature
TL;DR: It is demonstrated that in both model systems, a combination of short-range attraction and long-range repulsion results in the formation of small equilibrium clusters, which is relevant for nucleation processes during protein crystallization, protein or DNA self-assembly.
Abstract: Controlling interparticle interactions, aggregation and cluster formation is of central importance in a number of areas, ranging from cluster formation in various disease processes to protein crystallography and the production of photonic crystals. Recent developments in the description of the interaction of colloidal particles with short-range attractive potentials have led to interesting findings including metastable liquid-liquid phase separation and the formation of dynamically arrested states (such as the existence of attractive and repulsive glasses, and transient gels). The emerging glass paradigm has been successfully applied to complex soft-matter systems, such as colloid-polymer systems and concentrated protein solutions. However, intriguing problems like the frequent occurrence of cluster phases remain. Here we report small-angle scattering and confocal microscopy investigations of two model systems: protein solutions and colloid-polymer mixtures. We demonstrate that in both systems, a combination of short-range attraction and long-range repulsion results in the formation of small equilibrium clusters. We discuss the relevance of this finding for nucleation processes during protein crystallization, protein or DNA self-assembly and the previously observed formation of cluster and gel phases in colloidal suspensions.

967 citations