scispace - formally typeset
Search or ask a question
Author

Anandaroop Bhattacharya

Other affiliations: University of Colorado Boulder, Techno India, Intel  ...read more
Bio: Anandaroop Bhattacharya is an academic researcher from Indian Institute of Technology Kharagpur. The author has contributed to research in topics: Heat transfer & Heat sink. The author has an hindex of 18, co-authored 69 publications receiving 1989 citations. Previous affiliations of Anandaroop Bhattacharya include University of Colorado Boulder & Techno India.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effective thermal conductivity (ke), permeability (K), and inertial coefficient (f) of high porosity metal foams were derived by considering a circular blob of metal at the intersection of two fibers.

998 citations

Journal ArticleDOI
TL;DR: Comparison with reported values for dead tissues shows the thermal conductivities of living organs to be higher, indicating thereby the dominant role played by blood perfusion in enhancing the net heat transfer in living tissues.
Abstract: In this paper, we present our experimental results on the determination of the thermal conductivity of biological tissues using a transient technique based on the principles of the cylindrical hot-wire method. A novel, 1.45 mm diameter, 50 mm long hot-wire probe was deployed. Initial measurements were made on sponge, gelatin and Styrofoam insulation to test the accuracy of the probe. Subsequent experiments conducted on sheep collagen in the range of 25 °C < T < 55 °C showed the thermal conductivity to be a linear function of temperature. Further, these changes in the thermal conductivity were found to be reversible. However, when the tissue was heated beyond 55 °C, irreversible changes in thermal conductivity were observed. Similar experiments were also conducted for determining the thermal conductivity of cow liver. In this case, the irreversible effects were found to set in much later at around 90 °C. Below this temperature, in the range of 25 °C < T < 90 °C, the thermal conductivity, as for sheep collagen, varied linearly with temperature. In the second part of our study, in vivo measurements were taken on the different organs of a living pig. Comparison with reported values for dead tissues shows the thermal conductivities of living organs to be higher, indicating thereby the dominant role played by blood perfusion in enhancing the net heat transfer in living tissues. The degree of enhancement is different in different organs and shows a direct dependence on the blood flow rate.

169 citations

Journal ArticleDOI
TL;DR: In this article, the authors present experimental results on buoyancy-induced convection in aluminum metal foams of different pore densities and porosities and show that compared to a heated surface, the heat transfer coefficients in these heat sinks are five to six times higher.
Abstract: In this paper, we present our recent experimental results on buoyancy-induced convection in aluminum metal foams of different pore densities [corresponding to 5, 10, 20, and 40 pores per in. (PPI)] and porosities (0.89-0.96). The results show that compared to a heated surface, the heat transfer coefficients in these heat sinks are five to six times higher. However, when compared to commercially available heat sinks of similar dimensions, the enhancement is found to be marginal. The experimental results also show that for a given pore size, the heat transfer rate increases with porosity, suggesting the dominant role played by conduction in enhancing heat transfer. On the other hand, if the porosity is held constant, the heat transfer rate is found to be lower at higher pore densities. This can be attributed to the higher permeability with the larger pores, which allows higher entrainment of air through the porous medium. New empirical correlations are proposed for the estimation of Nusselt number in terms of Rayleigh and Darcy numbers. We also report our results on novel finned metal foam heat sinks in natural convection. Experiments were conducted on aluminum foams of 90% porosity with 5 and 20 PPI with one, two, and four aluminum fins inserted in the foam. All of these heat sinks were fabricated in-house. The results show that the finned metal foam heat sinks are superior in thermal performance compared to the normal metal foam and conventional finned heat sinks. The heat transfer increases with an increase in the number of fins. However, the relative enhancement is found to decrease with each additional fin. The indication is that there exists an optimum number of fins beyond which the enhancement in heat transfer, due to increased surface area, is offset by the retarding effect of overlapping thermal boundary layers. Similar to normal metal foams, the 5 PPI samples are found to give higher values of h compared to the 20 PPI samples due to higher permeability of the porous medium. Future work is planned to arrive at the optimal heat sink configuration for even larger enhancement in heat transfer.

115 citations

Journal ArticleDOI
TL;DR: A novel alternating current electrothermal (ACET) micromixer driven by a high efficiency ACET micropump found that using a specific design, uniform and homogeneous mixing quality with mixing efficiency of 97.25% and flow rate of 1.794μm2/ min per unit width of the channel can be achieved.
Abstract: In this paper, we investigate a novel alternating current electrothermal (ACET) micromixer driven by a high efficiency ACET micropump. The micromixer consists of thin film asymmetric pairs of electrodes on the microgrooved channel floor and array of electrode pairs fabricated on the top wall. By connecting electrodes with AC voltage, ACET forces are induced. Asymmetric microgrooved electrodes force the fluids along the channel, while lateral vortex pairs are generated by symmetric electrode pairs located on the top wall. Waviness of the floor increases contact area between two confluent streams within a narrow confinement. An active mixer operates as a semi active semi passive mixer. Effects of various parameters are investigated in details in order to arrive at an optimal configuration that provides for efficient mixing as well as appreciable transport. It is found that using a specific design, uniform and homogeneous mixing quality with mixing efficiency of 97.25 % and flow rate of 1.794 μm2/min per unit width of the channel can be achieved. This article is protected by copyright. All rights reserved

69 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, lattice truss topologies with open cell structures were evaluated for structural load support in light-weight sandwich panel structures, and three classes of periodic cellular metals can be fabricated from a wide variety of structural alloys.
Abstract: Periodic cellular metals with honeycomb and corrugated topologies are widely used for the cores of light weight sandwich panel structures. Honeycombs have closed cell pores and are well suited for thermal protection while also providing efficient load support. Corrugated core structures provide less efficient and highly anisotropic load support, but enable cross flow heat exchange opportunities because their pores are continuous in one direction. Recent advances in topology design and fabrication have led to the emergence of lattice truss structures with open cell structures. These three classes of periodic cellular metals can now be fabricated from a wide variety of structural alloys. Many topologies are found to provide adequate stiffness and strength for structural load support when configured as the cores of sandwich panels. Sandwich panels with core relative densities of 2-10% and cell sizes in the millimetre range are being assessed for use as multifunctional structures. The open, three-dimensional interconnected pore networks of lattice truss topologies provide opportunities for simultaneously supporting high stresses while also enabling cross flow heat exchange. These highly compressible structures also provide opportunities for the mitigation of high intensity dynamic loads created by impacts and shock waves in air or water. By filling the voids with polymers and hard ceramics, these structures have also been found to offer significant resistance to penetration by projectiles.

716 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of metal foams on solid/liquid phase change heat transfer is investigated, and the results show that the use of metal foam can make the sample solidified much faster than pure PCM samples, evidenced by the solidification time being reduced by more than half.

620 citations

Journal ArticleDOI
TL;DR: In this article, a review of the existing major analytical approaches dealing with material properties modeling is presented, with a focus on some recent advances in numerical methodology that are able to predict more accurately and efficiently the effective physical properties of multiphase materials with complex internal microstructures.
Abstract: Theoretical prediction of effective properties for multiphase material systems is very important not only to analysis and optimization of material performance, but also to new material designs. This review first examines the issues, difficulties and challenges in prediction of material behaviors by summarizing and critiquing the existing major analytical approaches dealing with material property modeling. The focus then shifts to some recent advances in numerical methodology that are able to predict more accurately and efficiently the effective physical properties of multiphase materials with complex internal microstructures. A random generation-growth algorithm is highlighted for reproducing multiphase microstructures, statistically equivalent to the actual systems, based on the geometrical and morphological information obtained from measurements and experimental estimations. Then a high-efficiency lattice Boltzmann solver for the corresponding governing equations is described which, while assuring energy conservation and the appropriate continuities at numerous interfaces in a complex system, has demonstrated its numerical power in yielding accurate solutions. Various applications are provided to validate the feasibility, effectiveness and robustness of this new methodology by comparing the predictions with existing experimental data from different transport processes, accounting for the effects due to component size, material anisotropy, internal morphology and multiphase interactions. The examples given also suggest even wider potential applicability of this methodology to other problems as long as they are governed by the similar partial differential equation(s). Thus, for given system composition and structure, this numerical methodology is in essence a model built on sound physics principles with prior validity, without resorting to ad hoc empirical treatment. Therefore, it is useful for design and optimization of new materials, beyond just predicting and analyzing the existing ones.

585 citations

01 Jan 2016
TL;DR: The principles of enhanced heat transfer is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for reading principles of enhanced heat transfer. As you may know, people have look numerous times for their chosen books like this principles of enhanced heat transfer, but end up in malicious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their desktop computer. principles of enhanced heat transfer is available in our book collection an online access to it is set as public so you can get it instantly. Our books collection spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the principles of enhanced heat transfer is universally compatible with any devices to read.

553 citations

Journal ArticleDOI
TL;DR: In this article, the impregnation ratios which reflect the actual mass fraction of pure paraffin impregnated were studied comparatively for the impregnations with and without vacuum assistance, and the surface porosity was obtained by employing the image processing approach.

459 citations