scispace - formally typeset
Search or ask a question
Author

Anania Arjuna

Bio: Anania Arjuna is an academic researcher. The author has contributed to research in topics: Plant tissue culture & Tagetes. The author has an hindex of 1, co-authored 1 publications receiving 1 citations.

Papers
More filters
01 Jan 2014
TL;DR: Till date, high growth of callus, shoot and root formation is observed in many of the research works and applications of newer methods are being employed so as to minimize the cost with an increase in the resultant outcome.
Abstract: The emerging new techniques in Plant Tissue Culture have led to the rapid growth of many plants of importance. Seasonal plants are even grown throughout the year under aseptic conditions. Plants of high medicinal value are cultivated in bulk and helps in increased amount for extraction of the necessary compounds. Tagetes erecta , a herbal medicinal plant, is propagated in vitro by applying the techniques of plant tissue culture. Till date, high growth of callus, shoot and root formation is observed in many of the research works. Also other species of the Tagetes family have shown good outcome in developing callus and root through tissue culture methods. Great work has been done in this field for the growth of the medicinal plant and many more are even expected to come. Applications of newer methods are being employed so as to minimize the cost with an increase in the resultant outcome.

2 citations


Cited by
More filters
BookDOI
01 Jan 1995
TL;DR: Critical aspects of the basic procedures of micropropagation, regeneration, and somatic embryogenesis are covered in a well-balanced collection of easy-to-follow protocols presented in three separate, but complimentary, volumes.
Abstract: The origin of plant cell and tissue culture can be found in a treatise published during the mid-18th century, entitled La Physique des Arbes, that describes the formation of callus tissue following the for mation of a ring of cortex from elm trees. Over the next two centuries, the discovery of plant growth hormones, in particular auxins and cytokinins, and detailed analyses on the nutritional requirements of plants, led to the formulation of media that could maintain actively dividing cultures derived from gymnosperms, and both dicotyledon ous and monocotyledonous angiosperms. However, much of the prog ress and technological development in the in vitro propagation of plant cells, tissues, and organs has occurred during the last 25 years. Recently, plant tissue culture techniques have been used as basic tools in the rapidly expanding field of plant biotechnology for the development and clonal propagation of new and/or improved plant varieties. Plant tissue culture is used for the micropropagation of commercially valuable cultivars that include ornamentals, oil palm, Glycyrrhiza, Pyrethrum, pine, Eucalyptus, sugar cane, and potatoes. Cultured plant tissue is also used for the selection of cells and, ul timately, the regeneration of plants that are tolerant to physical stresses such as pathogens, drought, and temperature extremes, and to chemical stress agents such as salinity, herbicides, proteins, and pyrethrins. In addition, new plants have been produced by the fusion of protoplasts prepared from cultured cells of different species in cluding sunflower and french bean, tomato and potato, and various cultivars of Datura. Finally, bacterial vectors and various mechanical methods have been used to introduce foreign genes into cultured plant tissues. Genetic transformation can result in profound changes in the phenotype and/or biochemical profile of the regenerated trans genic plants that are not characteristic of the wild type. An impressive variety of technologies in tissue culture, genetic manipulation, and molecular biology have been developed for nu merous plant species. Many of these techniques, sometimes referred to as plant biotechnology, have been extensively summarized and compiled in a well-balanced collection of easy-to-follow protocols presented in three separate, but complimentary, volumes. Plant Cell, Tissue and Organ Culture consists of 22 chapters (with 86 figures) and 5 appendices. The chapters cover critical aspects of (a) the es sential requirements for the operation of a plant tissue culture lab oratory; (b) the basic procedures of micropropagation, regeneration, and somatic embryogenesis; (c) some specific applications of organ culture systems such as embryo rescue and culture, and anther and microspore culture for haploid and double haploid production; (d) elementary transformation technology; and (e) useful microtechnique and analytical protocols specifically adapted to cultured tissues and cells. The appendices provide a convenient summary of media for mulations and commercial suppliers for the materials described in the text.

662 citations

Journal ArticleDOI
01 Nov 2022-Plants
TL;DR: In this paper , a review aims to provide up-to-date research progress on incorporating organic growth additives to enhance in vitro tissue culture protocols and to emphasize the importance of using PCR-based molecular markers such as RAPD, ISSR, SSR, and SCoT.
Abstract: The growing demand for native planting material in ecological restoration and rehabilitation for agro-silvo-pastoral ecosystems has resulted in a major global industry in their sourcing, multiplication, and sale. Plant tissue culture is used for producing high-quality, disease-free, and true-to-type plants at a fast rate. Micropropagation can help to meet the increasing demand for planting material and afforestation programs. However, in vitro plant propagation is an expensive technique compared to conventional methods using suckers, seeds, and cuttings. Therefore, adopting measures to lower production costs without compromising plant quality is essential. This can be achieved by improving the culture media composition. Incorporating organic growth additives can stimulate tissue growth and increase the number of shoots, leaves, and roots in culture media. Organic growth supplementation speeds up the formation and development of cultures and yields vigorous plants. Plant regeneration from meristems (shoot tips and axillary buds) is a reliable way to produce true-to-type plants compared with callus and somatic embryogenesis regeneration, but in vitro culture environments can be mutagenic. Therefore, detecting somaclonal variations at an early stage of development is considered crucial in propagating plants. The genetic stability of in vitro regenerated plants needs to be ascertained by using DNA-based molecular markers. This review aims to provide up-to-date research progress on incorporating organic growth additives to enhance in vitro tissue culture protocols and to emphasize the importance of using PCR-based molecular markers such as RAPD, ISSR, SSR, and SCoT. The review was assessed based on the peer-reviewed works published in scientific databases including Science Direct, Scopus, Springer, JSTOR, onlinelibrary, and Google Scholar.

2 citations