scispace - formally typeset
Search or ask a question
Author

Anant R. Kapdi

Bio: Anant R. Kapdi is an academic researcher from Institute of Chemical Technology. The author has contributed to research in topics: Palladium & Catalysis. The author has an hindex of 26, co-authored 120 publications receiving 5298 citations. Previous affiliations of Anant R. Kapdi include University of Göttingen & Indian Institute of Technology Kharagpur.
Topics: Palladium, Catalysis, Aryl, Chemistry, Phosphine


Papers
More filters
Journal ArticleDOI
TL;DR: P palladium and ruthenium catalysts have been described that enable the direct arylation of (hetero)arenes with challenging coupling partners--including electrophilic aryl chlorides and tosylates as well as simple arenes in cross-dehydrogenative arylations.
Abstract: The area of transition-metal-catalyzed direct arylation through cleavage of CH bonds has undergone rapid development in recent years, and is becoming an increasingly viable alternative to traditional cross-coupling reactions with organometallic reagents In particular, palladium and ruthenium catalysts have been described that enable the direct arylation of (hetero)arenes with challenging coupling partners—including electrophilic aryl chlorides and tosylates as well as simple arenes in cross-dehydrogenative arylations Furthermore, less expensive copper, iron, and nickel complexes were recently shown to be effective for economically attractive direct arylations

2,408 citations

Journal ArticleDOI
TL;DR: In this paper, Palladium-and Ruthenium-katalysatoren have been beschrieben, welche die direkte Arylierung von (Hetero)arenen mit anspruchsvollen Reaktionspartnern ermoglichen; hierzu gehoren elektrophile Arylchloride und -tosylate oder auch einfache Arene in gekreuzten dehydrierenden ADC.
Abstract: Das Gebiet der ubergangsmetallkatalysierten direkten Arylierung unter C-H-Bindungsbruch hat in den letzten Jahren eine rasante Entwicklung erfahren, was dazu fuhrte, dass sich solche Methoden immer mehr als Alternativen zu den herkommlichen Kreuzkupplungen mit metallorganischen Reagentien etabliert haben Insbesondere wurden zahlreiche Palladium- und Rutheniumkatalysatoren beschrieben, welche die direkte Arylierung von (Hetero)arenen mit anspruchsvollen Reaktionspartnern ermoglichen; hierzu gehoren elektrophile Arylchloride und -tosylate oder auch einfache Arene in gekreuzten dehydrierenden Arylierungen

732 citations

Journal ArticleDOI
TL;DR: This review provides readers with an up to date account of the advances that have taken place over the past several decades in platinum-based chemotherapeutic agents, i.e. through interactions with DNA.
Abstract: Much success has been achieved with platinum-based chemotherapeutic agents, i.e. through interactions with DNA. The long-term application of Pt complexes is thwarted by issues, leading scientists to examine other metals such as palladium which could exhibit complementary modes of action (given emphasis wherever known). Over the last 10 years several research groups have focused on the application of an eclectic array of palladium complexes (of the type PdX2L2, palladacycles and related structures) as potential anti-cancer agents. This review therefore provides readers with an up to date account of the advances that have taken place over the past several decades.

281 citations

Journal ArticleDOI
TL;DR: Recent progress in organometallic C-H activation on peptides until June 2018 is summarized, including position- and chemoselective palladium-, ruthenium-, and manganese-catalyzed processes.
Abstract: The late-stage modification of structurally complex peptides bears great potential for drug discovery, crop protection, and the pharmaceutical industry, among others. Whereas traditional approaches largely rely on prefunctionalizations, C-H activation catalysis has in recent years emerged as an increasingly powerful tool for post-translational peptide modifications in a step-economic manner. Herein, we summarize recent progress in organometallic C-H activation on peptides until June 2018, including position- and chemoselective palladium-, ruthenium-, and manganese-catalyzed processes.

216 citations

Journal ArticleDOI
TL;DR: Trans-PdBr(N-Succ)(PPh3)2 (1) is a universally effective precatalyst for Suzuki-Miyaura cross-couplings of benzylic halides with aryl- or heteroarylboronic acids in excellent yields.

135 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This review summarizes the development and scope of carboxylates as cocatalysts in transition-metal-catalyzed C-H functionalizations until autumn 2010 and proposes new acronyms, such as CMD (concerted metalationdeprotonation), IES (internal electrophilic substitution), or AMLA (ambiphilic metal ligand activation), which describe related mechanisms.
Abstract: The site-selective formation of carbon-carbon bonds through direct functionalizations of otherwise unreactive carbon-hydrogen bonds constitutes an economically attractive strategy for an overall streamlining of sustainable syntheses. In recent decades, intensive research efforts have led to the development of various reaction conditions for challenging C-H bond functionalizations, among which transition-metal-catalyzed transformations arguably constitute thus far the most valuable tool. For instance, the use of inter alia palladium, ruthenium, rhodium, copper, or iron complexes set the stage for chemo-, site-, diastereo-, and/or enantioselective C-H bond functionalizations. Key to success was generally a detailed mechanistic understanding of the elementary C-H bond metalation step, which depending on the nature of the metal fragment can proceed via several distinct reaction pathways. Traditionally, three different modes of action were primarily considered for CH bond metalations, namely, (i) oxidative addition with electronrich late transition metals, (ii) σ-bond metathesis with early transition metals, and (iii) electrophilic activation with electrondeficient late transition metals (Scheme 1). However, more recent mechanistic studies indicated the existence of a continuum of electrophilic, ambiphilic, and nucleophilic interactions. Within this continuum, detailed experimental and computational analysis provided strong evidence for novel C-H bond metalationmechanisms relying on the assistance of a bifunctional ligand bearing an additional Lewis-basic heteroatom, such as that found in (heteroatom-substituted) secondary phosphine oxides or most prominently carboxylates (Scheme 1, iv). This novel insight into the nature of stoichiometric metalations has served as stimulus for the development of novel transformations based on cocatalytic amounts of carboxylates, which significantly broadened the scope of C-H bond functionalizations in recent years, with most remarkable progress being made in palladiumor ruthenium-catalyzed direct arylations and direct alkylations. These carboxylate-assisted C-H bond transformations were mostly proposed to proceed via a mechanism in which metalation takes place via a concerted base-assisted deprotonation. To mechanistically differentiate these intramolecular metalations new acronyms have recently been introduced into the literature, such as CMD (concerted metalationdeprotonation), IES (internal electrophilic substitution), or AMLA (ambiphilic metal ligand activation), which describe related mechanisms and will be used below where appropriate. This review summarizes the development and scope of carboxylates as cocatalysts in transition-metal-catalyzed C-H functionalizations until autumn 2010. Moreover, experimental and computational studies on stoichiometric metalation reactions being of relevance to the mechanism of these catalytic processes are discussed as well. Mechanistically related C-H bond cleavage reactions with ruthenium or iridium complexes bearing monodentate ligands are, however, only covered with respect to their working mode, and transformations with stoichiometric amounts of simple acetate bases are solely included when their mechanism was suggested to proceed by acetate-assisted metalation.

2,820 citations

Journal ArticleDOI
TL;DR: Transition-Metal-Free Reactions, Alkynylation of Heterocycles, and Synthesis of Electronic and Electrooptical Molecules: A Review.
Abstract: 3.7. Palladium Nanoparticles as Catalysts 888 3.8. Other Transition-Metal Complexes 888 3.9. Transition-Metal-Free Reactions 889 4. Applications 889 4.1. Alkynylation of Arenes 889 4.2. Alkynylation of Heterocycles 891 4.3. Synthesis of Enynes and Enediynes 894 4.4. Synthesis of Ynones 896 4.5. Synthesis of Carbocyclic Systems 897 4.6. Synthesis of Heterocyclic Systems 898 4.7. Synthesis of Natural Products 903 4.8. Synthesis of Electronic and Electrooptical Molecules 906

2,522 citations

Journal ArticleDOI
TL;DR: This Review provides an overview of C-H bond functionalization strategies for the rapid synthesis of biologically active compounds such as natural products and pharmaceutical targets.
Abstract: The direct functionalization of C-H bonds in organic compounds has recently emerged as a powerful and ideal method for the formation of carbon-carbon and carbon-heteroatom bonds. This Review provides an overview of C-H bond functionalization strategies for the rapid synthesis of biologically active compounds such as natural products and pharmaceutical targets.

2,391 citations