scispace - formally typeset
Search or ask a question
Author

Anastasia Delichatsiou

Bio: Anastasia Delichatsiou is an academic researcher. The author has contributed to research in topics: Interbasin transfer & Context (language use). The author has an hindex of 1, co-authored 1 publications receiving 11 citations.

Papers
More filters
01 Jan 2017
TL;DR: In this paper, the authors assess the project of the interbasin water transfer from the river Acheloos to the river Pinios basin which has intrigued the Greek society, the politicians and scientists for decades.
Abstract: Interbasin water transfer is a primary instrument of water resources management directly related with the integrated development of the economy, society and environment. Here we assess the project of the interbasin water transfer from the river Acheloos to the river Pinios basin which has intrigued the Greek society, the politicians and scientists for decades. The set of criteria we apply originate from a previous study reviewing four interbasin water transfers and assessing whether an interbasin water transfer is compatible with the concept of integrated water resources management. In this respect, we assess which of the principles of the integrated water resources management the Acheloos to Pinios interbasin water transfer project does or does not satisfy. While the project meets the criteria of real surplus and deficit, of sustainability and of sound science, i.e., the criteria mostly related to the engineering part, it fails to meet the criteria of good governance and balancing of existing rights with needs, i.e., the criteria associated with social aspects of the project. The non-fulfilment of the latter criteria is the consequence of chronic diseases of the Greek society, which become obvious in the case study.

14 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Water transfer megaprojects (WTMPs) are defined as large-scale engineering interventions to divert water within and between river basins that meet one of the following criteria: construction costs > USD 1 billion, distance of transfer > 190 km, or volume of water transferred exceeds 0.23 km3 per year as mentioned in this paper.
Abstract: Globally, freshwater is unevenly distributed, both in space and time. Climate change, land use alteration, and increasing human exploitation will further increase the pressure on water as a resource for human welfare and on inland water ecosystems. Water transfer megaprojects (WTMP) are defined here as large-scale engineering interventions to divert water within and between river basins that meet one of the following criteria: construction costs > USD 1 billion, distance of transfer > 190 km, or volume of water transferred exceeds 0.23 km3 per year. WTMP represent an engineered solution to cope with water scarcity. These projects are most commonly associated with large-scale agricultural and energy development schemes, and many of them serve multiple purposes. Despite numerous case studies that focus on the social, economic and environmental impacts of individual water transfer megaprojects, a global inventory of existing, planned and proposed projects is lacking. We carried out the first comprehensive global inventory of WTMP that are planned, proposed or under construction. We collected key information (e.g. location, distance, volume, costs, purpose) on 34 existing and 76 future (planned, proposed or under construction) WTMP. If realized, the total volume of water transferred by future projects will reach 1,910 km3 per year with a total transfer distance of more than twice the length of the Earth’s equator. The largest future WTMP are located in North America, Asia and Africa and the predicted total investment will exceed 2.7 trillion US$. Among future projects, 42 are for agricultural development, 13 for hydropower development and 10 combine both purposes. Future megaprojects are also planned to support mining, ecosystem restoration and navigation. Our results underscore the extent to which humans have and are planning to re-engineer the global hydrological network and flows through WTMP, creating a network of “artificial rivers”. They emphasize the need to ensure the inclusion of these projects in global and basin hydrological models, and to develop internationally agreed criteria to assess the ecological, social and economic impacts of WTMP.

94 citations

Journal ArticleDOI
11 Jan 2019
TL;DR: In this paper, a review of related design and operational manuals is conducted, along with a hydroclimatic analysis of the catchment of the Oroville Dam's main spillway.
Abstract: In February 2017, a failure occurring in Oroville Dam’s main spillway risked causing severe damages downstream. A unique aspect of this incident was the fact that it happened during a flood scenario well within its design and operational procedures, prompting research into its causes and determining methods to prevent similar events from reoccurring. In this study, a hydroclimatic analysis of Oroville Dam’s catchment is conducted, along with a review of related design and operational manuals. The data available allows for the comparison of older flood-frequency analyses to new alternative methods proposed in this paper and relevant literature. Based on summary characteristics of the 2017 floods, possible causes of the incident are outlined, in order to understand which factors contributed more significantly. It turns out that the event was most likely the result of a structural problem in the dam’s main spillway and detrimental geological conditions, but analysis of surface level data also reveals operational issues that were not present during previous larger floods, promoting a discussion about flood control design methods, specifications, and dam inspection procedures, and how these can be improved to prevent a similar event from occurring in the future.

25 citations

Journal ArticleDOI
TL;DR: In this article , the authors performed a forensic analysis of the IANOS hurricane in the Karditsa prefecture of Thessaly region (Greece) and provided forensic research on a reconstruction of the flood event.
Abstract: On 18 September 2020, the Karditsa prefecture of Thessaly region (Greece) experienced a catastrophic flood as a consequence of the IANOS hurricane. This intense phenomenon was characterized by rainfall records ranging from 220 mm up to 530 mm, in a time interval of 15 h. Extended public infrastructure was damaged and thousands of houses and commercial properties were flooded, while four casualties were recorded. The aim of this study was to provide forensic research on a reconstruction of the flood event in the vicinity of Karditsa city. First, we performed a statistical analysis of the rainfall. Then, we used two numerical models and observed data, either captured by satellites or mined from social media, in order to simulate the event a posteriori. Specifically, a rainfall–runoff CN-unit hydrograph model was combined with a hydrodynamic model based on 2D-shallow water equations model, through the coupling of the hydrological software HEC-HMS with the hydrodynamic software HEC-RAS. Regarding the observed data, the limited available gauged records led us to use a wide spectrum of remote sensing datasets associated with rainfall, such as NASA GPM–IMREG, and numerous videos posted on social media, such as Facebook, in order to validate the extent of the flood. The overall assessment proved that the exceedance probability of the IANOS flooding event ranged from 1:400 years in the low-lying catchments, to 1:1000 years in the upstream mountainous catchments. Moreover, a good performance for the simulated flooding extent was achieved using the numerical models and by comparing their output with the remote sensing footage provided by SENTINEL satellites images, along with the georeferenced videos posted on social media.

24 citations

Journal ArticleDOI
20 Sep 2018-Water
TL;DR: In this article, a novel conceptual classification for fish quality is proposed, associating fish fauna requirements with hydraulic characteristics, exported by fish survey analyses, and is applied and validated successfully at three stream sites in Lesotho, where DRIFT was formerly employed.
Abstract: Over the last decade, Environmental Flow Assessment (EFA) has focused scientific attention around heavily-modified hydrosystems, such as flow regulated releases downstream of dams. In this light, numerous approaches of varying complexity have been developed, the most holistic of which incorporate hydrological, hydraulic, biological and water quality inputs, as well as socioeconomic issues. Finding the optimal flow releases, informing policy and determining an operational framework are often the main focus. This work exhibits a simplification of the DRIFT framework, and is regarded as the first holistic EFA approach, consisting of three modules, namely hydrological, hydraulic and fish quality. A novel conceptual classification for fish quality is proposed, associating fish fauna requirements with hydraulic characteristics, exported by fish survey analyses. The new methodology was applied and validated successfully at three stream sites in Lesotho, where DRIFT was formerly employed.

15 citations

Journal ArticleDOI
TL;DR: In this paper, large-scale water transfer projects (LWTPs) have been promoted to address rising water demands around the world, and scholars have been examining various impacts of LWTPs for decades; however, there is...
Abstract: Large-scale water transfer projects (LWTPs) have been promoted to address rising water demands around the world. Scholars have been examining various impacts of LWTPs for decades; however, there is...

12 citations