scispace - formally typeset
Search or ask a question
Author

Anat Levin

Bio: Anat Levin is an academic researcher from Technion – Israel Institute of Technology. The author has contributed to research in topics: Speckle pattern & Scattering. The author has an hindex of 42, co-authored 91 publications receiving 12993 citations. Previous affiliations of Anat Levin include Stanford University & Hebrew University of Jerusalem.


Papers
More filters
Journal ArticleDOI
TL;DR: A closed-form solution to natural image matting that allows us to find the globally optimal alpha matte by solving a sparse linear system of equations and predicts the properties of the solution by analyzing the eigenvectors of a sparse matrix, closely related to matrices used in spectral image segmentation algorithms.
Abstract: Interactive digital matting, the process of extracting a foreground object from an image based on limited user input, is an important task in image and video editing. From a computer vision perspective, this task is extremely challenging because it is massively ill-posed - at each pixel we must estimate the foreground and the background colors, as well as the foreground opacity ("alpha matte") from a single color measurement. Current approaches either restrict the estimation to a small part of the image, estimating foreground and background colors based on nearby pixels where they are known, or perform iterative nonlinear estimation by alternating foreground and background color estimation with alpha estimation. In this paper, we present a closed-form solution to natural image matting. We derive a cost function from local smoothness assumptions on foreground and background colors and show that in the resulting expression, it is possible to analytically eliminate the foreground and background colors to obtain a quadratic cost function in alpha. This allows us to find the globally optimal alpha matte by solving a sparse linear system of equations. Furthermore, the closed-form formula allows us to predict the properties of the solution by analyzing the eigenvectors of a sparse matrix, closely related to matrices used in spectral image segmentation algorithms. We show that high-quality mattes for natural images may be obtained from a small amount of user input.

1,851 citations

Journal ArticleDOI
01 Aug 2004
TL;DR: This paper presents a simple colorization method that requires neither precise image segmentation, nor accurate region tracking, and demonstrates that high quality colorizations of stills and movie clips may be obtained from a relatively modest amount of user input.
Abstract: Colorization is a computer-assisted process of adding color to a monochrome image or movie The process typically involves segmenting images into regions and tracking these regions across image sequences Neither of these tasks can be performed reliably in practice; consequently, colorization requires considerable user intervention and remains a tedious, time-consuming, and expensive taskIn this paper we present a simple colorization method that requires neither precise image segmentation, nor accurate region tracking Our method is based on a simple premise; neighboring pixels in space-time that have similar intensities should have similar colors We formalize this premise using a quadratic cost function and obtain an optimization problem that can be solved efficiently using standard techniques In our approach an artist only needs to annotate the image with a few color scribbles, and the indicated colors are automatically propagated in both space and time to produce a fully colorized image or sequence We demonstrate that high quality colorizations of stills and movie clips may be obtained from a relatively modest amount of user input

1,505 citations

Proceedings ArticleDOI
29 Jul 2007
TL;DR: A simple modification to a conventional camera is proposed to insert a patterned occluder within the aperture of the camera lens, creating a coded aperture, and introduces a criterion for depth discriminability which is used to design the preferred aperture pattern.
Abstract: A conventional camera captures blurred versions of scene information away from the plane of focus. Camera systems have been proposed that allow for recording all-focus images, or for extracting depth, but to record both simultaneously has required more extensive hardware and reduced spatial resolution. We propose a simple modification to a conventional camera that allows for the simultaneous recovery of both (a) high resolution image information and (b) depth information adequate for semi-automatic extraction of a layered depth representation of the image. Our modification is to insert a patterned occluder within the aperture of the camera lens, creating a coded aperture. We introduce a criterion for depth discriminability which we use to design the preferred aperture pattern. Using a statistical model of images, we can recover both depth information and an all-focus image from single photographs taken with the modified camera. A layered depth map is then extracted, requiring user-drawn strokes to clarify layer assignments in some cases. The resulting sharp image and layered depth map can be combined for various photographic applications, including automatic scene segmentation, post-exposure refocusing, or re-rendering of the scene from an alternate viewpoint.

1,489 citations

Proceedings ArticleDOI
20 Jun 2009
TL;DR: The previously reported failure of the naive MAP approach is explained by demonstrating that it mostly favors no-blur explanations and it is shown that since the kernel size is often smaller than the image size a MAP estimation of the kernel alone can be well constrained and accurately recover the true blur.
Abstract: Blind deconvolution is the recovery of a sharp version of a blurred image when the blur kernel is unknown. Recent algorithms have afforded dramatic progress, yet many aspects of the problem remain challenging and hard to understand. The goal of this paper is to analyze and evaluate recent blind deconvolution algorithms both theoretically and experimentally. We explain the previously reported failure of the naive MAP approach by demonstrating that it mostly favors no-blur explanations. On the other hand we show that since the kernel size is often smaller than the image size a MAP estimation of the kernel alone can be well constrained and accurately recover the true blur. The plethora of recent deconvolution techniques makes an experimental evaluation on ground-truth data important. We have collected blur data with ground truth and compared recent algorithms under equal settings. Additionally, our data demonstrates that the shift-invariant blur assumption made by most algorithms is often violated.

1,219 citations

Proceedings ArticleDOI
17 Jun 2006
TL;DR: A closed-form solution to natural image matting that allows us to find the globally optimal alpha matte by solving a sparse linear system of equations and predicts the properties of the solution by analyzing the eigenvectors of a sparse matrix, closely related to matrices used in spectral image segmentation algorithms.
Abstract: Interactive digital matting, the process of extracting a foreground object from an image based on limited user input, is an important task in image and video editing. From a computer vision perspective, this task is extremely challenging because it is massively ill-posed - at each pixel we must estimate the foreground and the background colors, as well as the foreground opacity ("alpha matte") from a single color measurement. Current approaches either restrict the estimation to a small part of the image, estimating foreground and background colors based on nearby pixels where they are known, or perform iterative nonlinear estimation by alternating foreground and background color estimation with alpha estimation. In this paper we present a closed form solution to natural image matting. We derive a cost function from local smoothness assumptions on foreground and background colors, and show that in the resulting expression it is possible to analytically eliminate the foreground and background colors to obtain a quadratic cost function in alpha. This allows us to find the globally optimal alpha matte by solving a sparse linear system of equations. Furthermore, the closed form formula allows us to predict the properties of the solution by analyzing the eigenvectors of a sparse matrix, closely related to matrices used in spectral image segmentation algorithms. We show that high quality mattes can be obtained on natural images from a surprisingly small amount of user input.

876 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal ArticleDOI
TL;DR: This survey provides an overview of higher-order tensor decompositions, their applications, and available software.
Abstract: This survey provides an overview of higher-order tensor decompositions, their applications, and available software. A tensor is a multidimensional or $N$-way array. Decompositions of higher-order tensors (i.e., $N$-way arrays with $N \geq 3$) have applications in psycho-metrics, chemometrics, signal processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, and elsewhere. Two particular tensor decompositions can be considered to be higher-order extensions of the matrix singular value decomposition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum of rank-one tensors, and the Tucker decomposition is a higher-order form of principal component analysis. There are many other tensor decompositions, including INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as well as nonnegative variants of all of the above. The N-way Toolbox, Tensor Toolbox, and Multilinear Engine are examples of software packages for working with tensors.

9,227 citations

Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper proposed a feed-forward denoising convolutional neural networks (DnCNNs) to handle Gaussian denobling with unknown noise level.
Abstract: The discriminative model learning for image denoising has been recently attracting considerable attentions due to its favorable denoising performance. In this paper, we take one step forward by investigating the construction of feed-forward denoising convolutional neural networks (DnCNNs) to embrace the progress in very deep architecture, learning algorithm, and regularization method into image denoising. Specifically, residual learning and batch normalization are utilized to speed up the training process as well as boost the denoising performance. Different from the existing discriminative denoising models which usually train a specific model for additive white Gaussian noise at a certain noise level, our DnCNN model is able to handle Gaussian denoising with unknown noise level (i.e., blind Gaussian denoising). With the residual learning strategy, DnCNN implicitly removes the latent clean image in the hidden layers. This property motivates us to train a single DnCNN model to tackle with several general image denoising tasks, such as Gaussian denoising, single image super-resolution, and JPEG image deblocking. Our extensive experiments demonstrate that our DnCNN model can not only exhibit high effectiveness in several general image denoising tasks, but also be efficiently implemented by benefiting from GPU computing.

5,902 citations

Book ChapterDOI
07 Oct 2012
TL;DR: The goal is to parse typical, often messy, indoor scenes into floor, walls, supporting surfaces, and object regions, and to recover support relationships, to better understand how 3D cues can best inform a structured 3D interpretation.
Abstract: We present an approach to interpret the major surfaces, objects, and support relations of an indoor scene from an RGBD image. Most existing work ignores physical interactions or is applied only to tidy rooms and hallways. Our goal is to parse typical, often messy, indoor scenes into floor, walls, supporting surfaces, and object regions, and to recover support relationships. One of our main interests is to better understand how 3D cues can best inform a structured 3D interpretation. We also contribute a novel integer programming formulation to infer physical support relations. We offer a new dataset of 1449 RGBD images, capturing 464 diverse indoor scenes, with detailed annotations. Our experiments demonstrate our ability to infer support relations in complex scenes and verify that our 3D scene cues and inferred support lead to better object segmentation.

4,827 citations