scispace - formally typeset
Search or ask a question
Author

Anatol I. Zverev

Bio: Anatol I. Zverev is an academic researcher. The author has contributed to research in topics: Electronic filter & Constant k filter. The author has an hindex of 1, co-authored 1 publications receiving 769 citations.

Papers
More filters
Book
15 Jan 1967
TL;DR: In this article, the authors present the theory of effective PARAMETERS in terms of the effectiveness of different types of filters in the real-time domain and the effect of different filters on the performance of the network.
Abstract: CHAPTER 1 FILTERS IN ELECTRONICS 11 Types of Filters 12 Filter Applications 13 All-Pass Filters 14 Properties of Lattice Filters 15 Filter Building Blocks 16 Higher Order Filters 17 Coil-Saving Bandpass Filters 18 Frequency Range of Applications 19 Physical Elements of the Filter 110 Active Bandpass Filters 111 RC Passive and Active Filters 112 Microwave Filters 113 Parametric Filters CHAPTER 2 THEORY OF EFFECTIVE PARAMETERS 21 Power Balance 22 Types of General Network Equations 23 Effective Attenuation 24 Reflective (Echo) Attenuation 25 Transmission Function as a Function of Frequency Parameter, s 26 Polynomials of Transmission and Filtering Functions 27 Filter Networks 28 Voltage and Current Sources 29 The Function D (s) As An Approximation Function 210 Example of Transmission Function Approximation 211 Simplest Polynomial Filters in Algebraic Form 212 Introduction to Image=Parameter Theory 213 Bridge Networks 214 Examples of Realization in the Bridge Form 215 Hurwitz Polynomial 216 The Smallest Realizabel Networks, 217 Fourth-Order Networks 218 Fifth-Order Networks CHAPTER 3 FILTER CHARACTERISTICS IN THE FREQUENCY DOMAIN 31 Amplitude Responses 32 Phase-and Group-Delay Responses 33 Group Delay of an Idealized Filter 34 Group Delay-Attenuation Relationship 35 The Chebyshev Family of Response Characteristics 36 Gaussian Family of Response Characteristics 37 A Filter with Transitional Magnitude Characteristics 38 Legendre Filters 39 Minimum-Loss Characteristics 310 Synchronously Tuned Filters 311 Arithmetically Symmetrical Bandpass Filters 312 Attenuation Characteristics of Image Parameter Filters 313 Other Types of Filter Characteristics 314 Plots of the Attenuation and Group Delay Characteristics CHAPTER 4 ELLIPTIC FUNCTION AND ELEMENTS OF REALIZATION 41 Double Periodic Elliptic Functions 42 Mapping of s-Plane into u-Plane 43 First Basic Transformation of Elliptic Functions 44 Filtering Function in z-Plane 45 Graphical Representation of Parameters 46 Characteristic Value of D(s) 47 An Example of Filter Design 48 Consideration of Losses 49 Introduction of Losses by Frequency Transformation 410 Highpass Filters with Losses 411 Transmission Functions with Losses 412 Conclusions on Consideration of Losses 413 Realization Process 414 Bandpass Filter with a Minimum Number of Inductors 415 The Elements of a Coil-Saving Network 416 Consideration of Losses in Zig-Zag Filters 417 Realization Procedure 418 Numerical Example of Realization 419 Full and Partial Removal for a Fifth-Order Filter CHAPTER 5 THE CATALOG OF NORMALIZED LOWPASS FILTERS 51 Introduction to the Catalog 52 Real Part of the Driving Point Impedance 53 Lowpass Filter Design 54 Design of Highpass Filters 55 Design of LC Bandpass Filters 56 Design of Narrowband Crystal Filters 57 Design of Bandstop Filters 58 Catalog of Normalized Lowpass Models CHAPTER 6 DESIGN TECHNIQUES FOR POLYNOMIAL FILTERS 61 Introduction to Tables of Normalized Element Values 62 Lowpass Design Examples 63 Bandpass Filter Design 64 Concept of Coupling 65 Coupled Resonators 66 Second-Order Bandpass Filter 67 Design with Tables of Predistorted k and q Parameters 68 Design Examples using Tables of k and q Values 69 Tables of Lowpass Element Values 610 Tables of 3-dB Down k and q Values CHAPTER 7 FILTER CHARACTERISTICS IN THE TIME DOMAIN 71 Introduction to Transient Characteristics 72 Time and Frequency Domains 73 Information Contained in the Impulse Response 74 Step Response 75 Impulse Response of an Ideal Gaussian Filter 76 Residue Determination 77 Numerical Example 78 Practical Steps on the Inverse Transformation 79 Inverse Transform of Rational Spectral Functions 710 Numerical Example 711 Estimation Theory 712 Transient Response in Highpass and Bandpass Filters 713 The Exact Calculation of Transient Phenomena for Highpass Systems 714 Estimate of Transient Responses in Narrowband Filters 715 The Exact Transient Calculation in Narrowband Systems 716 Group Delay Versus Transient Response 717 Computer Determination of Filter Impulse Response 718 Transient Response Curves CHAPTER 8 CRYSTAL FILTERS 81 Introduction 82 Crystal Structure 83 Theory of Piezoelectricity 84 Properties of Piezoelectric Quartz Crystals 85 Classification of Crystal Filters 86 Bridge Filters 87 Limitation of Bridge Crystal Filters 88 Spurious Response 89 Circuit Analysis of a Simple Filter 810 Element Values in Image-Parameter Formulation 811 Ladder Filters 812 Effective Attenuation of Simple Filters 813 Effective Attenuation of Ladder Networks 814 Ladder Versus Bridge Filters 815 Practical Differential Transformer for Crystal Filters 816 Design of Narrowband Filters with the Aid or Lowpass Model 817 Synthesis of Ladder Single Sideband Filters 818 The Synthesis of Intermediate Bandpass Filters 819 Example of Band-Reject Filter 820 Ladder Filters with Large Bandwidth CHAPTER 9 HELICAL FILTERS 91 Introduction 92 Helical Resonators 93 Filter with Helical Resonators 94 Alignment of Helical Filters 95 Examples of Helical Filtering CHAPTER 10 NETWORK TRANSFORMATIONS 10 1 Two-Terminal Network Transformations 102 Delta-Star Transformation 103 Use of Transformer in Filter Realization 104 Norton's Transformation 105 Applications of Mutual Inductive Coupling 106 The Realization of LC Filters with Crystal Resonators 107 Negative and Positive Capacitor Tranformation 108 Bartlett's Bisection Theorem 109 Cauer's Equivalence 1010 Canonic Bandpass Structures 1011 Bandpass Ladder Filters Having a Cononical Number of Inductors without Mutual Coupling 1012 Impedance and Admittance Inverters 1013 Source and Load Transformation Bibliography Index

777 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a method of coupling of modes in time was proposed to simplify both the analysis and filter synthesis aspects of these devices, and the response of filters comprised of an arbitrarily large dumber of resonators may be written down by inspection, as a continued fraction.
Abstract: Microring resonators side coupled to signal waveguides provide compact, narrow band, and large free spectral range optical channel dropping filters. Higher order filters with improved passband characteristics and larger out-of-band signal rejection are realized through the coupling of multiple rings. The analysis of these devices is approached by the novel method of coupling of modes in time. The response of filters comprised of an arbitrarily large dumber of resonators may be written down by inspection, as a continued fraction. This approach simplifies both the analysis and filter synthesis aspects of these devices.

1,733 citations

Journal ArticleDOI
TL;DR: This paper considers the challenging problem of blind sub-Nyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum, and proposes a system, named the modulated wideband converter, which first multiplies the analog signal by a bank of periodic waveforms.
Abstract: Conventional sub-Nyquist sampling methods for analog signals exploit prior information about the spectral support. In this paper, we consider the challenging problem of blind sub-Nyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum. Our primary design goals are efficient hardware implementation and low computational load on the supporting digital processing. We propose a system, named the modulated wideband converter, which first multiplies the analog signal by a bank of periodic waveforms. The product is then low-pass filtered and sampled uniformly at a low rate, which is orders of magnitude smaller than Nyquist. Perfect recovery from the proposed samples is achieved under certain necessary and sufficient conditions. We also develop a digital architecture, which allows either reconstruction of the analog input, or processing of any band of interest at a low rate, that is, without interpolating to the high Nyquist rate. Numerical simulations demonstrate many engineering aspects: robustness to noise and mismodeling, potential hardware simplifications, real-time performance for signals with time-varying support and stability to quantization effects. We compare our system with two previous approaches: periodic nonuniform sampling, which is bandwidth limited by existing hardware devices, and the random demodulator, which is restricted to discrete multitone signals and has a high computational load. In the broader context of Nyquist sampling, our scheme has the potential to break through the bandwidth barrier of state-of-the-art analog conversion technologies such as interleaved converters.

1,186 citations

Journal ArticleDOI
01 Feb 1986
TL;DR: Wave digital filters (WDFs) as discussed by the authors are modeled after classical filters, preferably in lattice or ladder configurations or generalizations thereof, and have very good properties concerning coefficient accuracy requirements, dynamic range, and especially all aspects of stability under finite-arithmetic conditions.
Abstract: Wave digital filters (WDFs) are modeled after classical filters, preferably in lattice or ladder configurations or generalizations thereof. They have very good properties concerning coefficient accuracy requirements, dynamic range, and especially all aspects of stability under finite-arithmetic conditions. A detailed review of WDF theory is given. For this several goals are set: to offer an introduction for those not familiar with the subject, to stress practical aspects in order to serve as a guide for those wanting to design or apply WDFs, and to give insight into the broad range of aspects of WDF theory and its many relationships with other areas, especially in the signal-processing field. Correspondingly, mathematical analyses are included only if necessary for gaining essential insight, while for all details of more special nature reference is made to existing literature.

937 citations

Journal ArticleDOI
Bram Nauta1
TL;DR: In this article, a linear, tunable integrator for very high-frequency integrated filters can be made, which has good linearity properties and non-dominant poles in the gigahertz range owing to the absence of internal nodes.
Abstract: CMOS circuits for integrated analog filters at very high frequencies, based on transconductance-C integrators, are presented. First a differential transconductance element based on CMOS inverters is described. With this circuit a linear, tunable integrator for very-high-frequency integrated filters can be made. This integrator has good linearity properties and nondominant poles in the gigahertz range owing to the absence of internal nodes. The integrator has a tunable DC gain, resulting in a controllable integrator quality factor. Experimental results of a VHF CMOS transconductance-C low-pass filter realized in a 3- mu m CMOS process are given. Both the cutoff frequency and the quality factors can be tuned. The cutoff frequency was tuned from 22 to 98 MHz and the measured filter response is very close to the ideal response of the passive prototype filter. Furthermore, a novel circuit for automatically tuning the quality factors of integrated filters built with these transconductors is described. >

674 citations

Journal ArticleDOI
TL;DR: In this article, an IC-compatible microelectromechanical intermediate frequency filters using integrated resonators with Q's in the thousands were demonstrated using polysilicon surface micromachining technology.
Abstract: IC-compatible microelectromechanical intermediate frequency filters using integrated resonators with Q's in the thousands to achieve filter Q's in the hundreds have been demonstrated using a polysilicon surface micromachining technology. These filters are composed of two clamped-clamped beam micromechanical resonators coupled by a soft flexural-mode mechanical spring. The center frequency of a given filter is determined by the resonance frequency of the constituent resonators, while the bandwidth is determined by the coupling spring dimensions and its location between the resonators. Quarter-wavelength coupling is required on this microscale to alleviate mass loading effects caused by similar resonator and coupler dimensions. Despite constraints arising from quarter-wavelength design, a range of percent bandwidths is still attainable by taking advantage of low-velocity spring attachment locations. A complete design procedure is presented in which electromechanical analogies are used to model the mechanical device via equivalent electrical circuits. Filter center frequencies around 8 MHz with Q's from 40 to 450 (i.e., percent bandwidths from 0.23 to 2.5%), associated insertion losses less than 2 dB, and spurious-free dynamic ranges around 78 dB are demonstrated using low-velocity designs with input and output termination resistances of the order of 12 k/spl Omega/.

485 citations