scispace - formally typeset
Search or ask a question
Author

Anatoliy I. Dragan

Bio: Anatoliy I. Dragan is an academic researcher from University of Maryland, Baltimore County. The author has contributed to research in topics: Fluorophore & Fluorescence. The author has an hindex of 13, co-authored 19 publications receiving 487 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used fluorescein-labeled different length DNA scaffolds, covalently bound to silver nanodeposits, to measure the distance dependence of metal-enhanced fluorescence effect.
Abstract: In recent years both the mechanism and applications of metal-enhanced fluorescence (MEF) have attracted significant attention, yet many fundamental aspects of MEF remain unanswered or addressed. In this study, we address a fundamental aspect of MEF. Using fluorescein-labeled different length DNA scaffolds, covalently bound to silver nanodeposits, we have experimentally measured the distance dependence of the MEF effect. The enhanced fluorescence signatures, i.e., MEF, follow quite closely the theoretical decay of the near-field of the nanoparticles, calculated using finite difference time domain approaches. This implies that the mechanisms of MEF are partially underpinned by the magnitude and distribution of the electric field around near-field nanoparticles.

80 citations

Journal ArticleDOI
TL;DR: The findings suggest that the distance dependence of metal-enhanced phenomena such as fluorescence, phosphorescence and delayed fluorescence is underpinned by the decay of the electric near-field, and depending on the actual silver silica sample embodiment, one can see either decreased or enhanced luminescence.
Abstract: Distance dependent singlet and triplet metal-enhanced emission of eosin from silica coated silver island films (SiFs) has been studied by steady-state and time resolved fluorescence techniques, along with theoretical finite difference time domain (FDTD) numerical simulations, to understand how the thickness of the dielectric coating surrounding silver nanoparticles fundamentally affects luminescence enhancement. Our findings suggest that the distance dependence of metal-enhanced phenomena such as fluorescence, phosphorescence and delayed fluorescence is underpinned by the decay of the electric near-field, and depending on the actual silver silica sample embodiment, one can see either decreased or enhanced luminescence. These results not only expand our current MEF thinking but also suggest that one may well be able to approximate plasmon-enhanced luminescence values.

76 citations

Journal ArticleDOI
TL;DR: This article addresses one of the major unresolved questions, whether far-field fluorophore quantum yield, Q0, has a direct relationship to fluorescence enhancement factors in metal-enhanced fluorescence.
Abstract: Metal-enhanced fluorescence has attracted enormous research and commercial interest in recent years, due to the ability to significantly enhance fluorescence signatures in the near-field as well as protect fluorophores against photobleaching. In this article, we address one of the major unresolved questions, whether far-field fluorophore quantum yield, Q0, has a direct relationship to fluorescence enhancement factors in metal-enhanced fluorescence.

61 citations

Journal ArticleDOI
09 Apr 2012-PLOS ONE
TL;DR: Sialyl residues on TLR4 modulate LPS responsiveness, perhaps by facilitating clustering of the homodimers, and that sialic acid, and perhaps other glycosyl species, regulate MD2 activity required for LPS-mediated signaling is concluded.
Abstract: We previously reported that neuraminidase (NA) pretreatment of human PBMCs markedly increased their cytokine response to lipopolysaccharide (LPS). To study the mechanisms by which this occurs, we transfected HEK293T cells with plasmids encoding TLR4, CD14, and MD2 (three components of the LPS receptor complex), as well as a NFκB luciferase reporting system. Both TLR4 and MD2 encoded by the plasmids are α-2,6 sialylated. HEK293T cells transfected with TLR4/MD2/CD14 responded robustly to the addition of LPS; however, omission of the MD2 plasmid abrogated this response. Addition of culture supernatants from MD2 (sMD2)-transfected HEK293T cells, but not recombinant, non-glycosylated MD2 reconstituted this response. NA treatment of sMD2 enhanced the LPS response as did NA treatment of the TLR4/CD14-transfected cell supplemented with untreated sMD2, but optimal LPS-initiated responses were observed with NA-treated TLR4/CD14-transfected cells supplemented with NA-treated sMD2. We hypothesized that removal of negatively charged sialyl residues from glycans on the TLR4 complex would hasten the dimerization of TLR4 monomers required for signaling. Co-transfection of HEK293T cells with separate plasmids encoding either YFP- or FLAG-tagged TLR4, followed by treatment with NA and stimulation with LPS, led to an earlier and more robust time-dependent dimerization of TLR4 monomers on co-immunoprecipitation, compared to untreated cells. These findings were confirmed by fluorescence resonance energy transfer (FRET) analysis. Overexpression of human Neu1 increased LPS-initiated TLR4-mediated NFκB activation and a NA inhibitor suppressed its activation. We conclude that (1) sialyl residues on TLR4 modulate LPS responsiveness, perhaps by facilitating clustering of the homodimers, and that (2) sialic acid, and perhaps other glycosyl species, regulate MD2 activity required for LPS-mediated signaling. We speculate that endogenous sialidase activity mobilized during cell activation may play a role in this regulation.

55 citations

Journal ArticleDOI
TL;DR: It is shown that the fluorescent probe, covalently attached to the secondary antibody, plays a crucial role of indicating complex formation in a metal-enhanced fluorescence (MEF)-PA assay using a combination of the MEF effect and microwave-accelerated PA protein surface absorption.

37 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This review serves to describe the physical theory of LSPR formation at the surface of nanostructures, and the potential for this optical technology to serve as a basis for the development bioassays and biosensing of high sensitivity.

1,002 citations

Journal ArticleDOI
TL;DR: This critical review will present the role of nanoparticles (NPs) in the directions that are vital to the new field of nanomedicine, including imaging and drug delivery, and review recent advances in major NP based biomedical applications.
Abstract: This critical review will present the role of nanoparticles (NPs) in the directions that are vital to the new field of nanomedicine, including imaging and drug delivery. We reflect on the physical properties that make NPs advantageous for in vivo efficacy, and review recent advances in major NP based biomedical applications. Critical questions of transport, uptake, and clearance will be discussed and illustrated through the success and opportunities of NP imaging and therapy on a photodynamic therapy (PDT) based NP system that has been developed in our lab over the past decade (540 references).

925 citations

Journal ArticleDOI
TL;DR: This review aimed to present major routes of synthesis of AgNPs, including physical, chemical, and biological synthesis processes, along with discrete physiochemical characteristics of AgNs, and discuss the underlying intricate molecular mechanisms behind their plasmonic properties on mono/bimetallic structures, potential cellular/microbial cytotoxicity, and optoelectronic property.
Abstract: Over the past few decades, metal nanoparticles less than 100 nm in diameter have made a substantial impact across diverse biomedical applications, such as diagnostic and medical devices, for personalized healthcare practice. In particular, silver nanoparticles (AgNPs) have great potential in a broad range of applications as antimicrobial agents, biomedical device coatings, drug-delivery carriers, imaging probes, and diagnostic and optoelectronic platforms, since they have discrete physical and optical properties and biochemical functionality tailored by diverse size- and shape-controlled AgNPs. In this review, we aimed to present major routes of synthesis of AgNPs, including physical, chemical, and biological synthesis processes, along with discrete physiochemical characteristics of AgNPs. We also discuss the underlying intricate molecular mechanisms behind their plasmonic properties on mono/bimetallic structures, potential cellular/microbial cytotoxicity, and optoelectronic property. Lastly, we conclude this review with a summary of current applications of AgNPs in nanoscience and nanomedicine and discuss their future perspectives in these areas.

775 citations

Journal ArticleDOI
TL;DR: It is shown that extracellular α-synuclein released from neuronal cells is an endogenous agonist for Toll-like receptor 2 (TLR2), which activates inflammatory responses in microglia, suggesting that both these proteins are novel therapeutic targets for modification of neuroinflammation in Parkinson's disease and related neurological diseases.
Abstract: Abnormal aggregation of α-synuclein and sustained microglial activation are important contributors to the pathogenic processes of Parkinson's disease. However, the relationship between disease-associated protein aggregation and microglia-mediated neuroinflammation remains unknown. Here, using a combination of in silico, in vitro and in vivo approaches, we show that extracellular α-synuclein released from neuronal cells is an endogenous agonist for Toll-like receptor 2 (TLR2), which activates inflammatory responses in microglia. The TLR2 ligand activity of α-synuclein is conformation-sensitive; only specific types of oligomer can interact with and activate TLR2. This paracrine interaction between neuron-released oligomeric α-synuclein and TLR2 in microglia suggests that both of these proteins are novel therapeutic targets for modification of neuroinflammation in Parkinson's disease and related neurological diseases.

634 citations