scispace - formally typeset
Search or ask a question
Author

Anatoly P. Napartovich

Bio: Anatoly P. Napartovich is an academic researcher from Energy Institute. The author has contributed to research in topics: Laser & Lasing threshold. The author has an hindex of 27, co-authored 296 publications receiving 3527 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an overview of experimental and theoretical research in the field of physics and engineering of singlet delta oxygen (SDO) production in low-temperature plasma of various electric discharges is presented.
Abstract: An overview is presented of experimental and theoretical research in the field of physics and engineering of singlet delta oxygen (SDO) production in low-temperature plasma of various electric discharges. Attention is paid mainly to the SDO production with SDO yield adequate for the development of an electric discharge oxygen–iodine laser (DOIL). The review comprises a historical sketch describing the main experimental results on SDO physics in low-temperature plasma obtained since the first detection of SDO in electric discharge in the 1950s and the first attempt to launch a DOIL in the 1970s up to the mid-1980s when several research groups started their activity aimed at DOIL development, stimulated by success in the development of a chemical oxygen–iodine laser (COIL). A detailed analysis of theoretical and experimental research on SDO production in electric discharge from the mid-1980s to the present, when the first DOIL has been launched, is given. Different kinetic models of oxygen low-temperature plasma are compared with the model developed by the authors. The latter comprises electron kinetics based on the accompanying solution of the electron Boltzmann equation, plasma chemistry including reactions of excited molecules and numerous ion–molecular reactions, thermal energy balance and electric circuit equation. The experimental part of the overview is focused on the experimental methods of SDO detection including experiments on the measurements of the Einstein coefficient for SDO transition and experimental procedures of SDO production in self-sustained and non-self-sustained discharges and analysis of different plasma-chemical processes occurring in oxygen low-temperature plasma which brings limitation to the maximum SDO yield and to the lifetime of the SDO in an electric discharge and its afterglow. Quite recently obtained results on gain and output characteristics of DOIL and some projects aimed at the development of high-power DOIL are discussed.

270 citations

Journal ArticleDOI
TL;DR: LXCat as mentioned in this paper is an open-access platform for curating data needed for modeling the electron and ion components of technological plasmas, including scattering cross sections and swarm/transport parameters, ion-neutral interaction potentials, and optical oscillator strengths.
Abstract: LXCat is an open-access platform (www.lxcat.net) for curating data needed for modeling the electron and ion components of technological plasmas. The data types presently supported on LXCat are scattering cross sections and swarm/transport parameters, ion-neutral interaction potentials, and optical oscillator strengths. Twenty-four databases contributed by different groups around the world can be accessed on LXCat. New contributors are welcome; the database contributors retain ownership and are responsible for the contents and maintenance of the individual databases. This article summarizes the present status of the project.

177 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of anode geometry, anode resistivity, inter-electrode distance and gas flow on the threshold currents that mark the corona-toglow and glow-to-spark transitions is investigated.
Abstract: In negative corona discharges in ambient air different discharge modes can be observed. In this paper the discharge current regions corresponding to these modes are determined. The influence of anode geometry, anode resistivity, inter-electrode distance and gas flow on the threshold currents that mark the corona-to-glow and glow-to-spark transitions is investigated. The experimental data are backed up by an analytical treatment of ionization instability development within a local current spot on metallic and resistive anodes.

140 citations

Journal ArticleDOI
TL;DR: In this paper, the physics of the temporal and spatial evolution of the negative corona and glow discharge with increase in current up to the transition to the spark were investigated. But the authors focused on the properties of diffusive GD at atmospheric pressure and determined the threshold conditions of sparking.
Abstract: Obtaining new information about different forms of self-sustained dc discharges that can be realized in pin-to-plane electrode geometry in ambient air is the goal of this paper. Experimental and numerical calculation data uncovering the physics of the temporal and spatial evolution of the negative corona and glow discharge (GD), with increase in current up to the transition to the spark, are presented. Special attention is paid to the properties of diffusive GD at atmospheric pressure, which is a necessary stage (steady-state or transient) preceding the spark and determining the threshold conditions of sparking.

130 citations

Journal ArticleDOI
TL;DR: It is reported that phase locking of a diode-pumped multicore fiber laser with a circular array of 18 Nd-doped emitters (microcores) acting as an active medium with a Talbot resonator configuration is achieved.
Abstract: We report phase locking of a diode-pumped multicore fiber laser with a circular array of 18 Nd-doped emitters (microcores) acting as an active medium. Phase locking was achieved in a Talbot resonator configuration. We present calculations of the effective reflection coefficients that are due to self-imaging. Far-field distributions and near-field pattern of several supermodes are calculated and compared with experimental results.

114 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This paper reviews the current state of the art in terms of continuous-wave and pulsed performance of ytterbium-doped fiber lasers, the current fiber gain medium of choice, and by far the most developed in Terms of high-power performance.
Abstract: The rise in output power from rare-earth-doped fiber sources over the past decade, via the use of cladding-pumped fiber architectures, has been dramatic, leading to a range of fiber-based devices with outstanding performance in terms of output power, beam quality, overall efficiency, and flexibility with regard to operating wavelength and radiation format. This success in the high-power arena is largely due to the fiber’s geometry, which provides considerable resilience to the effects of heat generation in the core, and facilitates efficient conversion from relatively low-brightness diode pump radiation to high-brightness laser output. In this paper we review the current state of the art in terms of continuous-wave and pulsed performance of ytterbium-doped fiber lasers, the current fiber gain medium of choice, and by far the most developed in terms of high-power performance. We then review the current status and challenges of extending the technology to other rare-earth dopants and associated wavelengths of operation. Throughout we identify the key factors currently limiting fiber laser performance in different operating regimes—in particular thermal management, optical nonlinearity, and damage. Finally, we speculate as to the likely developments in pump laser technology, fiber design and fabrication, architectural approaches, and functionality that lie ahead in the coming decade and the implications they have on fiber laser performance and industrial/scientific adoption.

1,689 citations

Journal ArticleDOI
TL;DR: A review of the state-of-the-art of this multidisciplinary area and identifying the key research challenges is provided in this paper, where the developments in diagnostics, modeling and further extensions of cross section and reaction rate databases are discussed.
Abstract: Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on non-equilibrium plasmas.

1,078 citations

01 Jan 1993
TL;DR: In this article, particle-in-cell (PIC) combined with Monte Carlo collision (MCC) calculations are used for simulation of partially ionized gases, with many of the features met in low-temperature collision plasmas.
Abstract: Many-particle charged-particle plasma simulations using spatial meshes for the electromagnetic field solutions, particle-in-cell (PIC) merged with Monte Carlo collision (MCC) calculations, are coming into wide use for application to partially ionized gases. The author emphasizes the development of PIC computer experiments since the 1950s starting with one-dimensional (1-D) charged-sheet models, the addition of the mesh, and fast direct Poisson equation solvers for 2-D and 3-D. Details are provided for adding the collisions between the charged particles and neutral atoms. The result is many-particle simulations with many of the features met in low-temperature collision plasmas; for example, with applications to plasma-assisted materials processing, but also related to warmer plasmas at the edges of magnetized fusion plasmas. >

1,022 citations