scispace - formally typeset
Search or ask a question
Author

and Brian T. Mayers

Bio: and Brian T. Mayers is an academic researcher from University of Washington. The author has contributed to research in topics: Ferrofluid & Coating. The author has an hindex of 2, co-authored 2 publications receiving 1821 citations.
Topics: Ferrofluid, Coating, Sol-gel, Nanowire, Template

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a sol−gel approach for the coating of superparamagnetic iron oxide nanoparticles with uniform shells of amorphous silica is described, which can be applied to particles contained in a commercial ferrofluid (e.g., the EMG 304 of Ferro-fluidics) and those synthesized through a wet chemical process.
Abstract: This paper describes a sol−gel approach for the coating of superparamagnetic iron oxide nanoparticles with uniform shells of amorphous silica. The coating process has been successfully applied to particles contained in a commercial ferrofluid (e.g., the EMG 304 of Ferrofluidics) and those synthesized through a wet chemical process. The thickness of silica coating could be conveniently controlled in the range of 2−100 nm by changing the concentration of the sol−gel solution. Fluorescent dyes, for example, 7-(dimethylamino)-4-methylcoumarin-3-isothiocyanate (DACITC) and tetramethylrhodamine-5-isothiocyanate (5-TRITC), have also been incorporated into the silica shells by covalently coupling these organic compounds with the sol−gel precursor. These multifunctional nanoparticles are potentially useful in a number of areas because they can be simultaneously manipulated with an externally applied magnetic field and characterized in situ using conventional fluorescence microscopy.

1,019 citations

Journal ArticleDOI
TL;DR: In this paper, a general approach that generates nanoscale hollow structures of metals by reacting solutions of appropriate salt solutions with solid templates of a more reactive metal is described, which are completely converted into soluble species during the replacement reaction.
Abstract: This paper describes a general approach that generates nanoscale hollow structures of metals by reacting solutions of appropriate salt solutions with solid templates of a more reactive metal. Typical examples include Au3+, Pt2+, and Pd2+ salts and nanoparticles or nanowires of silver. The morphology, void space, and wall thickness of these hollow structures are all determined by the solid templates, which are completely converted into soluble species during the replacement reaction. Both electron microscopy and diffraction studies indicate that single crystalline hollow structures of metals can also be obtained when the templates are single crystals. These metallic hollow structures, having well-controlled sizes and shapes, are expected to find use in a number of applications that involve nanoscale encapsulation, drug delivery, plasmon photonics, and calorimetric sensing.

882 citations


Cited by
More filters
Journal ArticleDOI
13 Dec 2002-Science
TL;DR: Monodisperse samples of silver nanocubes were synthesized in large quantities by reducing silver nitrate with ethylene glycol in the presence of poly(vinyl pyrrolidone) (PVP), characterized by a slightly truncated shape bounded by {100, {110}, and {111} facets.
Abstract: Monodisperse samples of silver nanocubes were synthesized in large quantities by reducing silver nitrate with ethylene glycol in the presence of poly(vinyl pyrrolidone) (PVP). These cubes were single crystals and were characterized by a slightly truncated shape bounded by {100}, {110}, and {111} facets. The presence of PVP and its molar ratio (in terms of repeating unit) relative to silver nitrate both played important roles in determining the geometric shape and size of the product. The silver cubes could serve as sacrificial templates to generate single-crystalline nanoboxes of gold: hollow polyhedra bounded by six {100} and eight {111} facets. Controlling the size, shape, and structure of metal nanoparticles is technologically important because of the strong correlation between these parameters and optical, electrical, and catalytic properties.

5,992 citations

Journal ArticleDOI
TL;DR: This review focuses on the synthesis, protection, functionalization, and application of magnetic nanoparticles, as well as the magnetic properties of nanostructured systems.
Abstract: This review focuses on the synthesis, protection, functionalization, and application of magnetic nanoparticles, as well as the magnetic properties of nanostructured systems. Substantial progress in the size and shape control of magnetic nanoparticles has been made by developing methods such as co-precipitation, thermal decomposition and/or reduction, micelle synthesis, and hydrothermal synthesis. A major challenge still is protection against corrosion, and therefore suitable protection strategies will be emphasized, for example, surfactant/polymer coating, silica coating and carbon coating of magnetic nanoparticles or embedding them in a matrix/support. Properly protected magnetic nanoparticles can be used as building blocks for the fabrication of various functional systems, and their application in catalysis and biotechnology will be briefly reviewed. Finally, some future trends and perspectives in these research areas will be outlined.

5,956 citations

Journal ArticleDOI
TL;DR: Practical Interests of Magnetic NuclearRelaxation for the Characterization of Superparamagnetic Colloid, and Use of Nanoparticles as Contrast Agents forMRI20825.
Abstract: 1. Introduction 20642. Synthesis of Magnetic Nanoparticles 20662.1. Classical Synthesis by Coprecipitation 20662.2. Reactions in Constrained Environments 20682.3. Hydrothermal and High-TemperatureReactions20692.4. Sol-Gel Reactions 20702.5. Polyol Methods 20712.6. Flow Injection Syntheses 20712.7. Electrochemical Methods 20712.8. Aerosol/Vapor Methods 20712.9. Sonolysis 20723. Stabilization of Magnetic Particles 20723.1. Monomeric Stabilizers 20723.1.1. Carboxylates 20733.1.2. Phosphates 20733.2. Inorganic Materials 20733.2.1. Silica 20733.2.2. Gold 20743.3. Polymer Stabilizers 20743.3.1. Dextran 20743.3.2. Polyethylene Glycol (PEG) 20753.3.3. Polyvinyl Alcohol (PVA) 20753.3.4. Alginate 20753.3.5. Chitosan 20753.3.6. Other Polymers 20753.4. Other Strategies for Stabilization 20764. Methods of Vectorization of the Particles 20765. Structural and Physicochemical Characterization 20785.1. Size, Polydispersity, Shape, and SurfaceCharacterization20795.2. Structure of Ferro- or FerrimagneticNanoparticles20805.2.1. Ferro- and Ferrimagnetic Nanoparticles 20805.3. Use of Nanoparticles as Contrast Agents forMRI20825.3.1. High Anisotropy Model 20845.3.2. Small Crystal and Low Anisotropy EnergyLimit20855.3.3. Practical Interests of Magnetic NuclearRelaxation for the Characterization ofSuperparamagnetic Colloid20855.3.4. Relaxation of Agglomerated Systems 20856. Applications 20866.1. MRI: Cellular Labeling, Molecular Imaging(Inflammation, Apoptose, etc.)20866.2.

5,915 citations

Journal ArticleDOI
TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,720 citations

Journal ArticleDOI
TL;DR: How the unique tunability of the plasmon resonance properties of metal nanoparticles through variation of their size, shape, composition, and medium allows chemists to design nanostructures geared for specific bio-applications is emphasized.
Abstract: Noble metal nanostructures attract much interest because of their unique properties, including large optical field enhancements resulting in the strong scattering and absorption of light. The enhancement in the optical and photothermal properties of noble metal nanoparticles arises from resonant oscillation of their free electrons in the presence of light, also known as localized surface plasmon resonance (LSPR). The plasmon resonance can either radiate light (Mie scattering), a process that finds great utility in optical and imaging fields, or be rapidly converted to heat (absorption); the latter mechanism of dissipation has opened up applications in several new areas. The ability to integrate metal nanoparticles into biological systems has had greatest impact in biology and biomedicine. In this Account, we discuss the plasmonic properties of gold and silver nanostructures and present examples of how they are being utilized for biodiagnostics, biophysical studies, and medical therapy. For instance, takin...

3,617 citations