scispace - formally typeset
Search or ask a question
Author

and Paul E. Laibinis

Bio: and Paul E. Laibinis is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Nanoparticle & Aqueous solution. The author has an hindex of 3, co-authored 3 publications receiving 768 citations.

Papers
More filters
Journal ArticleDOI
01 Jan 1999-Langmuir
TL;DR: Aqueous magnetic fluids were synthesized by a sequential process involving the chemical coprecipitation of Fe(II and Fe(III) salts with ammonium hydroxide (NH4OH) followed by resuspension of the ultrafine particles in water using fatty acids.
Abstract: Aqueous magnetic fluids were synthesized by a sequential process involving the chemical coprecipitation of Fe(II) and Fe(III) salts with ammonium hydroxide (NH4OH) followed by resuspension of the ultrafine particles in water using fatty acids. This procedure produced Fe3O4 nanoparticles stabilized against agglomeration by bilayers of n-alkanoic acids with 9−13 carbons encapsulating the metal particles. The magnetic properties and particle size and size distributions of these magnetic fluids, characterized by transmission electron microscopy and superconducting quantum interference device, indicated the formation of single-domain nanoparticles of mean diameter ∼9.3 and ∼7.5 nm, respectively; the difference in values determined by the two methods implies the presence of a nonmagnetic layer on the particle surface. Thermogravimetric analysis measurements showed the existence of two distinct populations of surfactants on the particle surface, each having surfactant coverage of ∼21−24 A2/molecule, that was con...

524 citations

Journal ArticleDOI
TL;DR: In this article, a class of water-based magnetic fluids that are specifically tailored to extract soluble organic compounds from water is described, which exhibit a high capacity for organic solutes, with partition coefficients between the polymer coating and water on the order of 103−105, consistent with values reported for solubilization of these organics in PEO−PPO−PEO block copolymer micelles.
Abstract: This paper describes a class of water-based magnetic fluids that are specifically tailored to extract soluble organic compounds from water. These magnetic fluids are prepared by precipitation and consist of a suspension of ∼7.5 nm magnetite (Fe3O4) nanoparticles coated with a ∼9 nm bifunctional polymer layer comprised of an outer hydrophilic poly(ethylene oxide) (PEO) region for colloidal stability and an inner hydrophobic poly(propylene oxide) (PPO) region for solubilization of organic compounds. The particles exhibit a high capacity for organic solutes, with partition coefficients between the polymer coating and water on the order of 103−105, which is consistent with values reported for solubilization of these organics in PEO−PPO−PEO block copolymer micelles. In bench-scale experiments, high-gradient magnetic separation (HGMS) is able to recover the nanoparticles with 98% efficiency. Process options for particle regeneration in water purification applications are discussed.

150 citations

Journal ArticleDOI
01 Jan 2001-Langmuir
TL;DR: In this article, small-angle neutron scattering and dynamic and static light scattering measurements were used to probe the structures of aqueous and organic-solvent-based magnetic fluids comprising dispersed magnetite nanoparticles (∼10 nm in diameter) stabilized against flocculation by adsorbed alkanoic acid layers.
Abstract: Small-angle neutron scattering and dynamic and static light scattering measurements were used to probe the structures of aqueous and organic-solvent-based magnetic fluids comprising dispersed magnetite nanoparticles (∼10 nm in diameter) stabilized against flocculation by adsorbed alkanoic acid layers. A core−shell model fitted to a set of neutron scattering spectra obtained from contrast variation experiments allowed the determination of the iron oxide core size and size distribution, the thicknesses of the surfactant shells, and the spatial arrangement of the individual particles. The magnetic colloidal particles appear to form compact fractal clusters with a fractal dimension of 2.52 and a correlation length of ∼350 A in aqueous magnetic fluids, consistent with the structures of clusters observed directly using cryo-TEM (transmission electron microscopy), whereas chainlike clusters with a fractal dimension of 1.22 and a correlation length of ∼400 A were found for organic-solvent-based magnetic fluids. T...

132 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review focuses on the synthesis, protection, functionalization, and application of magnetic nanoparticles, as well as the magnetic properties of nanostructured systems.
Abstract: This review focuses on the synthesis, protection, functionalization, and application of magnetic nanoparticles, as well as the magnetic properties of nanostructured systems. Substantial progress in the size and shape control of magnetic nanoparticles has been made by developing methods such as co-precipitation, thermal decomposition and/or reduction, micelle synthesis, and hydrothermal synthesis. A major challenge still is protection against corrosion, and therefore suitable protection strategies will be emphasized, for example, surfactant/polymer coating, silica coating and carbon coating of magnetic nanoparticles or embedding them in a matrix/support. Properly protected magnetic nanoparticles can be used as building blocks for the fabrication of various functional systems, and their application in catalysis and biotechnology will be briefly reviewed. Finally, some future trends and perspectives in these research areas will be outlined.

5,956 citations

Journal ArticleDOI
TL;DR: This review describes recent advances in the synthesis of biomolecule-nanoparticle/nanorod hybrid systems and the application of such assemblies in the generation of 2D and 3D ordered structures in solutions and on surfaces.
Abstract: Nanomaterials, such as metal or semiconductor nanoparticles and nanorods, exhibit similar dimensions to those of biomolecules, such as proteins (enzymes, antigens, antibodies) or DNA. The integration of nanoparticles, which exhibit unique electronic, photonic, and catalytic properties, with biomaterials, which display unique recognition, catalytic, and inhibition properties, yields novel hybrid nanobiomaterials of synergetic properties and functions. This review describes recent advances in the synthesis of biomolecule-nanoparticle/nanorod hybrid systems and the application of such assemblies in the generation of 2D and 3D ordered structures in solutions and on surfaces. Particular emphasis is directed to the use of biomolecule-nanoparticle (metallic or semiconductive) assemblies for bioanalytical applications and for the fabrication of bioelectronic devices.

2,334 citations

Journal ArticleDOI
TL;DR: This work aims to review different strategies of surface modification and functionalization of inorganic colloidal nanoparticles with a special focus on the material systems gold and semiconductor nanoparticles, such as CdSe/ZnS.
Abstract: Inorganic colloidal nanoparticles are very small, nanoscale objects with inorganic cores that are dispersed in a solvent. Depending on the material they consist of, nanoparticles can possess a number of different properties such as high electron density and strong optical absorption (e.g. metal particles, in particular Au), photoluminescence in the form of fluorescence (semiconductor quantum dots, e.g. CdSe or CdTe) or phosphorescence (doped oxide materials, e.g. Y(2)O(3)), or magnetic moment (e.g. iron oxide or cobalt nanoparticles). Prerequisite for every possible application is the proper surface functionalization of such nanoparticles, which determines their interaction with the environment. These interactions ultimately affect the colloidal stability of the particles, and may yield to a controlled assembly or to the delivery of nanoparticles to a target, e.g. by appropriate functional molecules on the particle surface. This work aims to review different strategies of surface modification and functionalization of inorganic colloidal nanoparticles with a special focus on the material systems gold and semiconductor nanoparticles, such as CdSe/ZnS. However, the discussed strategies are often of general nature and apply in the same way to nanoparticles of other materials.

1,477 citations

Journal ArticleDOI
TL;DR: The introduction of magnetic nanoparticles in a variety of solid matrices allows the combination of well-known procedures for catalyst heterogenization with techniques for magnetic separation.
Abstract: Recovery and reuse of expensive catalysts after catalytic reactions are important factors for sustainable process management. The aim of this Review is to highlight the progress in the formation and catalytic applications of magnetic nanoparticles and magnetic nanocomposites. Directed functionalization of the surfaces of nanosized magnetic materials is an elegant way to bridge the gap between heterogeneous and homogeneous catalysis. The introduction of magnetic nanoparticles in a variety of solid matrices allows the combination of well-known procedures for catalyst heterogenization with techniques for magnetic separation.

1,303 citations

Journal ArticleDOI
TL;DR: A review of the state-of-the-art in responsive polymer systems for controlled drug delivery applications is given in this article, where the authors describe different types of stimuli-sensitive systems and give an account of their synthesis through methods such as group transfer polymerization, atom transfer radical polymerization and reversible addition-fragmentation chain transfer polymerisation.

1,186 citations