scispace - formally typeset
Search or ask a question
Author

Andac Armutlulu

Bio: Andac Armutlulu is an academic researcher from ETH Zurich. The author has contributed to research in topics: Catalysis & Sorbent. The author has an hindex of 14, co-authored 42 publications receiving 822 citations. Previous affiliations of Andac Armutlulu include Georgia Institute of Technology & Boğaziçi University.

Papers
More filters
Journal ArticleDOI
TL;DR: Owing to the high activity of the material and the absence of any XRD signature of FeO, it is very likely that FeO is formed as small domains of a few atom layer thickness covering a fraction of the surface of the Ni-rich particles, ensuring a close proximity of the carbon removal (FeO) and methane activation (Ni).
Abstract: The dry reforming of methane (DRM), i.e., the reaction of methane and CO2 to form a synthesis gas, converts two major greenhouse gases into a useful chemical feedstock. In this work, we probe the effect and role of Fe in bimetallic NiFe dry reforming catalysts. To this end, monometallic Ni, Fe, and bimetallic Ni-Fe catalysts supported on a MgxAlyOz matrix derived via a hydrotalcite-like precursor were synthesized. Importantly, the textural features of the catalysts, i.e., the specific surface area (172–178 m2/gcat), pore volume (0.51–0.66 cm3/gcat), and particle size (5.4–5.8 nm) were kept constant. Bimetallic, Ni4Fe1 with Ni/(Ni + Fe) = 0.8, showed the highest activity and stability, whereas rapid deactivation and a low catalytic activity were observed for monometallic Ni and Fe catalysts, respectively. XRD, Raman, TPO, and TEM analysis confirmed that the deactivation of monometallic Ni catalysts was in large due to the formation of graphitic carbon. The promoting effect of Fe in bimetallic Ni-Fe was elu...

308 citations

Journal ArticleDOI
TL;DR: A facile one-pot synthesis approach to yield highly effective, MgO-stabilized, CaO-based CO2 sorbents featuring highly porous multishelled morphologies, identified as an essential feature to yield a high-performance sorbent.
Abstract: Calcium looping, a CO2 capture technique, may offer a mid-term if not near-term solution to mitigate climate change, triggered by the yet increasing anthropogenic CO2 emissions. A key requirement for the economic operation of calcium looping is the availability of highly effective CaO-based CO2 sorbents. Here we report a facile synthesis route that yields hollow, MgO-stabilized, CaO microspheres featuring highly porous multishelled morphologies. As a thermal stabilizer, MgO minimized the sintering-induced decay of the sorbents’ CO2 capacity and ensured a stable CO2 uptake over multiple operation cycles. Detailed electron microscopy-based analyses confirm a compositional homogeneity which is identified, together with the characteristics of its porous structure, as an essential feature to yield a high-performance sorbent. After 30 cycles of repeated CO2 capture and sorbent regeneration, the best performing material requires as little as 11 wt.% MgO for structural stabilization and exceeds the CO2 uptake of the limestone-derived reference material by ~500%.

144 citations

Journal ArticleDOI
TL;DR: A template-assisted hydrothermal approach to develop CaO-based sorbents exhibiting a very high and cyclically stable CO2 uptake is exploited, thus maximizing the fraction of CO2 -capture-active CaO.
Abstract: CO2 capture and storage is a promising concept to reduce anthropogenic CO2 emissions. The most established technology for capturing CO2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high-temperature CO2 sorbent can significantly reduce the costs of CO2 capture. A serious disadvantage of CaO derived from earth-abundant precursors, e.g., limestone, is the rapid, sintering-induced decay of its cyclic CO2 uptake. Here, a template-assisted hydrothermal approach to develop CaO-based sorbents exhibiting a very high and cyclically stable CO2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al2O3 (<3 nm) containing a central void, ensure (i) minimal diffusion limitations, (ii) space to accompany the substantial volumetric changes during CO2 capture and release, and (iii) a minimal quantity of Al2O3 for structural stabilization, thus maximizing the fraction of CO2-capture-active CaO.

111 citations

Journal ArticleDOI
TL;DR: In this paper, a micro-scale battery that harnesses energy from metallic corrosion to power implants while simultaneously dissolving was presented, which exhibited an energy density of 694 Wh kg−1 and a total volume of 0.02 cm3.
Abstract: This study presents the design, fabrication, and testing of biodegradable magnesium/iron batteries featuring polycaprolactone (PCL) as a packaging and functional material. The use of PCL encapsulation minimized the electrochemical cell volume and supported longer discharge lifetimes and higher discharge rates than state-of-the-art biodegradable batteries. Specifically, the electrodes were separated and insulated by a 5 µm-thick PCL layer that served as both a battery packaging material and a permeable coating for physiological solution to penetrate and activate the battery. A systematic investigation of the electrode size, discharge rates, electrolyte selection, and polymeric coating revealed the critical reactions and phenomena governing the performance of the Mg-based biodegradable batteries. Comparison with previous reports on biodegradable batteries and medical-grade non-degradable lithium-ion batteries demonstrated the superior performance of PCL-coated Mg/Fe batteries at these size scales, which exhibited an energy density of 694 Wh kg−1 and a total volume of 0.02 cm3. A battery that generates power by ‘eating’ itself in saline fluid could help extend the capabilities of biodegradable medical implants. Treating non-chronic ailments such as brain trauma or bone injuries with smart implants would allow physicians to remotely monitor the recovery process, but requires surgical removal of the device after healing. Transient implants that dissolve after a short exposure to physiological conditions offer a promising nonsurgical option but are currently limited to passive, low-power designs. Mark Allen from the University of Pennsylvania and his research group have fabricated a microscale battery that harnesses energy from metallic corrosion to power implants while simultaneously dissolving. Composed of magnesium and iron electrodes encapsulated by a biodegradable polycaprolactone salt-permeable mebrane, the team's micrometer-scale battery has a two order of magnitude higher energy density than comparable devices.

76 citations

Journal ArticleDOI
TL;DR: Overall, it is demonstrated that the communication pathways could be multiple and intrinsically disposed, and the MC path generation approach provides an effective tool for the prediction of key residues that mediate the allosteric communication in an ensemble of pathways and functionally plausible residues.
Abstract: Allosteric mechanism of proteins is essential in biomolecular signaling. An important aspect underlying this mechanism is the communication pathways connecting functional residues. Here, a Monte Carlo (MC) path generation approach is proposed and implemented to define likely allosteric pathways through generating an ensemble of maximum probability paths. The protein structure is considered as a network of amino acid residues, and inter-residue interactions are described by an atomistic potential function. PDZ domain structures are presented as case studies. The analysis for bovine rhodopsin and three myosin structures are also provided as supplementary case studies. The suggested pathways and the residues constituting the pathways are maximally probable and mostly agree with the previous studies. Overall, it is demonstrated that the communication pathways could be multiple and intrinsically disposed, and the MC path generation approach provides an effective tool for the prediction of key residues that mediate the allosteric communication in an ensemble of pathways and functionally plausible residues. The MCPath server is available at http://safir.prc.boun.edu.tr/clbet_server.

69 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A highly sensitive, flexible, and degradable pressure sensor fabricated by sandwiching porous MXene-impregnated tissue paper between a biodegradable polylactic acid (PLA) thin sheet and an interdigitated electrode-coated PLA thin sheet that exhibits high sensitivity with a low detection limit, broad range, fast response, and robust environmental degradability.
Abstract: Flexible and degradable pressure sensors have received tremendous attention for potential use in transient electronic skins, flexible displays, and intelligent robotics due to their portability, re...

476 citations

Journal ArticleDOI
TL;DR: This work critically summarized and comprehensively reviewed the characteristics and performance of both liquid and solid CO2 adsorbents with possible schemes for the improvement of their CO2 capture ability and advances in CO2 utilization.
Abstract: Dramatically increased CO2 concentration from several point sources is perceived to cause severe greenhouse effect towards the serious ongoing global warming with associated climate destabilization, inducing undesirable natural calamities, melting of glaciers, and extreme weather patterns. CO2 capture and utilization (CCU) has received tremendous attention due to its significant role in intensifying global warming. Considering the lack of a timely review on the state-of-the-art progress of promising CCU techniques, developing an appropriate and prompt summary of such advanced techniques with a comprehensive understanding is necessary. Thus, it is imperative to provide a timely review, given the fast growth of sophisticated CO2 capture and utilization materials and their implementation. In this work, we critically summarized and comprehensively reviewed the characteristics and performance of both liquid and solid CO2 adsorbents with possible schemes for the improvement of their CO2 capture ability and advances in CO2 utilization. Their industrial applications in pre- and post-combustion CO2 capture as well as utilization were systematically discussed and compared. With our great effort, this review would be of significant importance for academic researchers for obtaining an overall understanding of the current developments and future trends of CCU. This work is bound to benefit researchers in fields relating to CCU and facilitate the progress of significant breakthroughs in both fundamental research and commercial applications to deliver perspective views for future scientific and industrial advances in CCU.

453 citations

Journal ArticleDOI
TL;DR: An overview of the current computational drug design and their application in integrated rational drug development to aid in the progress of drug discovery research is given.
Abstract: Drug discovery utilizes chemical biology and computational drug design approaches for the efficient identification and optimization of lead compounds. Chemical biology is mostly involved in the elucidation of the biological function of a target and the mechanism of action of a chemical modulator. On the other hand, computer-aided drug design makes use of the structural knowledge of either the target (structure-based) or known ligands with bioactivity (ligand-based) to facilitate the determination of promising candidate drugs. Various virtual screening techniques are now being used by both pharmaceutical companies and academic research groups to reduce the cost and time required for the discovery of a potent drug. Despite the rapid advances in these methods, continuous improvements are critical for future drug discovery tools. Advantages presented by structure-based and ligand-based drug design suggest that their complementary use, as well as their integration with experimental routines, has a powerful impact on rational drug design. In this article, we give an overview of the current computational drug design and their application in integrated rational drug development to aid in the progress of drug discovery research.

400 citations

Journal ArticleDOI
TL;DR: A detailed discussion on the development of bimetallic Ni-based catalysts for DRM including nickel alloyed with noble metals (Pt, Ru, Ir etc.) and transition metals (Co, Fe, Cu) is presented.
Abstract: In recent years, CO2 reforming of methane (dry reforming of methane, DRM) has become an attractive research area because it converts two major greenhouse gasses into syngas (CO and H2 ), which can be directly used as fuel or feedstock for the chemical industry. Ni-based catalysts have been extensively used for DRM because of its low cost and good activity. A major concern with Ni-based catalysts in DRM is severe carbon deposition leading to catalyst deactivation, and a lot of effort has been put into the design and synthesis of stable Ni catalysts with high carbon resistance. One effective and practical strategy is to introduce a second metal to obtain bimetallic Ni-based catalysts. The synergistic effect between Ni and the second metal has been shown to increase the carbon resistance of the catalyst significantly. In this review, a detailed discussion on the development of bimetallic Ni-based catalysts for DRM including nickel alloyed with noble metals (Pt, Ru, Ir etc.) and transition metals (Co, Fe, Cu) is presented. Special emphasis has been provided on the underlying principles that lead to synergistic effects and enhance catalyst performance. Finally, an outlook is presented for the future development of Ni-based bimetallic catalysts.

368 citations

Journal ArticleDOI
TL;DR: A unified view of how allostery works is described, which not only clarifies the elusive allosteric mechanism but also provides structural grasp of agonist-mediated signaling pathways, and guidesallosteric drug discovery.
Abstract: The question of how allostery works was posed almost 50 years ago. Since then it has been the focus of much effort. This is for two reasons: first, the intellectual curiosity of basic science and the desire to understand fundamental phenomena, and second, its vast practical importance. Allostery is at play in all processes in the living cell, and increasingly in drug discovery. Many models have been successfully formulated, and are able to describe allostery even in the absence of a detailed structural mechanism. However, conceptual schemes designed to qualitatively explain allosteric mechanisms usually lack a quantitative mathematical model, and are unable to link its thermodynamic and structural foundations. This hampers insight into oncogenic mutations in cancer progression and biased agonists' actions. Here, we describe how allostery works from three different standpoints: thermodynamics, free energy landscape of population shift, and structure; all with exactly the same allosteric descriptors. This results in a unified view which not only clarifies the elusive allosteric mechanism but also provides structural grasp of agonist-mediated signaling pathways, and guides allosteric drug discovery. Of note, the unified view reasons that allosteric coupling (or communication) does not determine the allosteric efficacy; however, a communication channel is what makes potential binding sites allosteric.

348 citations