scispace - formally typeset
Search or ask a question
Author

Anders Lundin

Other affiliations: Karolinska Institutet
Bio: Anders Lundin is an academic researcher from AstraZeneca. The author has contributed to research in topics: Induced pluripotent stem cell & Genome editing. The author has an hindex of 4, co-authored 9 publications receiving 125 citations. Previous affiliations of Anders Lundin include Karolinska Institutet.

Papers
More filters
Journal ArticleDOI
TL;DR: A novel computational platform called Rational InDel Meta-Analysis (RIMA) is presented that enables an in-depth comprehensive analysis of Cas9-induced genetic alterations, especially InDels mutations, and can be used to quantitate the contribution of classical microhomology-mediated end joining (c-MMEJ) pathway in the formation of mutations at Cas9 target sites.
Abstract: The mutation patterns at Cas9 targeted sites contain unique information regarding the nuclease activity and repair mechanisms in mammalian cells. However, analytical framework for extracting such information are lacking. Here, we present a novel computational platform called Rational InDel Meta-Analysis (RIMA) that enables an in-depth comprehensive analysis of Cas9-induced genetic alterations, especially InDels mutations. RIMA can be used to quantitate the contribution of classical microhomology-mediated end joining (c-MMEJ) pathway in the formation of mutations at Cas9 target sites. We used RIMA to compare mutational signatures at 15 independent Cas9 target sites in human A549 wildtype and A549-POLQ knockout cells to elucidate the role of DNA polymerase θ in c-MMEJ. Moreover, the single nucleotide insertions at the Cas9 target sites represent duplications of preceding nucleotides, suggesting that the flexibility of the Cas9 nuclease domains results in both blunt- and staggered-end cuts. Thymine at the fourth nucleotide before protospacer adjacent motif (PAM) results in a two-fold higher occurrence of single nucleotide InDels compared to guanine at the same position. This study provides a novel approach for the characterization of the Cas9 nucleases with improved accuracy in predicting genome editing outcomes and a potential strategy for homology-independent targeted genomic integration.

80 citations

Journal ArticleDOI
TL;DR: The ODInCas9 mouse allows robust and tunable genome editing granting flexibility, speed and uniformity at less cost, leading to high throughput and practical preclinical in vivo therapeutic testing.
Abstract: The CRISPR-Cas9 system has increased the speed and precision of genetic editing in cells and animals. However, model generation for drug development is still expensive and time-consuming, demanding more target flexibility and faster turnaround times with high reproducibility. The generation of a tightly controlled ObLiGaRe doxycycline inducible SpCas9 (ODInCas9) transgene and its use in targeted ObLiGaRe results in functional integration into both human and mouse cells culminating in the generation of the ODInCas9 mouse. Genomic editing can be performed in cells of various tissue origins without any detectable gene editing in the absence of doxycycline. Somatic in vivo editing can model non-small cell lung cancer (NSCLC) adenocarcinomas, enabling treatment studies to validate the efficacy of candidate drugs. The ODInCas9 mouse allows robust and tunable genome editing granting flexibility, speed and uniformity at less cost, leading to high throughput and practical preclinical in vivo therapeutic testing.

61 citations

Journal ArticleDOI
TL;DR: In this article, a toxin-based selection strategy was proposed to engineer cells using CRISPR-Cas and base editing systems, which enables the rapid generation of a homogenous cell population with bi-allelic integration of a DNA cassette at the selection locus, without clonal isolation.
Abstract: Prokaryotic restriction enzymes, recombinases and Cas proteins are powerful DNA engineering and genome editing tools. However, in many primary cell types, the efficiency of genome editing remains low, impeding the development of gene- and cell-based therapeutic applications. A safe strategy for robust and efficient enrichment of precisely genetically engineered cells is urgently required. Here, we screen for mutations in the receptor for Diphtheria Toxin (DT) which protect human cells from DT. Selection for cells with an edited DT receptor variant enriches for simultaneously introduced, precisely targeted gene modifications at a second independent locus, such as nucleotide substitutions and DNA insertions. Our method enables the rapid generation of a homogenous cell population with bi-allelic integration of a DNA cassette at the selection locus, without clonal isolation. Toxin-based selection works in both cancer-transformed and non-transformed cells, including human induced pluripotent stem cells and human primary T-lymphocytes, as well as it is applicable also in vivo, in mice with humanized liver. This work represents a flexible, precise, and efficient selection strategy to engineer cells using CRISPR-Cas and base editing systems. Genome engineering in cell lines or human stem cells often has poor efficiency, limiting the development of research and therapeutic applications. Here, the authors use a toxin-based selection system for precise bi-allelic engineering in cells and in vivo.

25 citations

Journal ArticleDOI
TL;DR: Heterogeneity in neurogenic progenitors that differed between the iPS cell‐ derived NSC lines and the fetal‐derived NSC line and differences in spontaneous differentiation potential for inhibitory and excitatory neurons are observed.
Abstract: We used single-cell RNA sequencing (seq) on several human induced pluripotent stem (iPS) cell-derived neural stem cell (NSC) lines and one fetal brain-derived NSC line to study inherent cell type heterogeneity at proliferating neural stem cell stage and uncovered predisposed presence of neurogenic and gliogenic progenitors. We observed heterogeneity in neurogenic progenitors that differed between the iPS cell-derived NSC lines and the fetal-derived NSC line, and we also observed differences in spontaneous differentiation potential for inhibitory and excitatory neurons between the iPS cell-derived NSC lines and the fetal-derived NSC line. In addition, using a recently published glia patterning protocol we enriched for gliogenic progenitors and generated glial cells from an iPS cell-derived NSC line.

19 citations

Journal ArticleDOI
01 May 2020
TL;DR: It is demonstrated that directed differentiation of neurogenic long‐term neuroepithelial stem cells undergo a neurogenic‐to‐gliogenic competence preferential change, acquiring a glial fate.
Abstract: Astrocyte biology has a functional and cellular diversity only observed in humans. The understanding of the regulatory network governing outer radial glia (RG), responsible for the expansion of the outer subventricular zone (oSVZ), and astrocyte cellular development remains elusive, partly since relevant human material to study these features is not readily available. A human-induced pluripotent stem cell derived astrocytic model, NES-Astro, has been recently developed, with high expression of astrocyte-associated markers and high astrocyte-relevant functionality. Here it is studied how the NES-Astro phenotype develops during specification and its correlation to known RG and astrocyte characteristics in human brain development. It is demonstrated that directed differentiation of neurogenic long-term neuroepithelial stem cells undergo a neurogenic-to-gliogenic competence preferential change, acquiring a glial fate. Temporal transcript profiles of long- and small RNA corroborate previously shown neurogenic restriction by glia-associated let-7 expression. Furthermore, NES-Astro differentiation displays proposed mechanistic features important for the evolutionary expansion of the oSVZ together with an astroglia/astrocyte transcriptome. The NES-Astro generation is a straight-forward differentiation protocol from stable and expandable neuroepithelial stem cell lines derived from iPS cells. Thus, the NES-Astro is an easy-access cell system with high biological relevance for studies of mechanistic traits of glia and astrocyte.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work systematically study the influence of flanking DNA sequence on repair outcome by measuring the edits generated by >40,000 guide RNAs (gRNAs) in synthetic constructs and uncover sequence determinants of the mutations produced and use these to derive a predictor of Cas9 editing outcomes.
Abstract: The DNA mutation produced by cellular repair of a CRISPR-Cas9-generated double-strand break determines its phenotypic effect. It is known that the mutational outcomes are not random, but depend on DNA sequence at the targeted location. Here we systematically study the influence of flanking DNA sequence on repair outcome by measuring the edits generated by >40,000 guide RNAs (gRNAs) in synthetic constructs. We performed the experiments in a range of genetic backgrounds and using alternative CRISPR-Cas9 reagents. In total, we gathered data for >109 mutational outcomes. The majority of reproducible mutations are insertions of a single base, short deletions or longer microhomology-mediated deletions. Each gRNA has an individual cell-line-dependent bias toward particular outcomes. We uncover sequence determinants of the mutations produced and use these to derive a predictor of Cas9 editing outcomes. Improved understanding of sequence repair will allow better design of gene editing experiments.

355 citations

Journal ArticleDOI
19 Apr 2019-Science
TL;DR: DISCOVER-Seq as mentioned in this paper is a universally applicable approach for unbiased off-target identification that leverages the recruitment of DNA repair factors in cells and organisms, tracking the precise recruitment of MRE11 uncovers the molecular nature of Cas activity in cells with single base resolution.
Abstract: CRISPR-Cas genome editing induces targeted DNA damage but can also affect off-target sites. Current off-target discovery methods work using purified DNA or specific cellular models but are incapable of direct detection in vivo. We developed DISCOVER-Seq (discovery of in situ Cas off-targets and verification by sequencing), a universally applicable approach for unbiased off-target identification that leverages the recruitment of DNA repair factors in cells and organisms. Tracking the precise recruitment of MRE11 uncovers the molecular nature of Cas activity in cells with single-base resolution. DISCOVER-Seq works with multiple guide RNA formats and types of Cas enzymes, allowing characterization of new editing tools. Off-targets can be identified in cell lines and patient-derived induced pluripotent stem cells and during adenoviral editing of mice, paving the way for in situ off-target discovery within individual patient genotypes during therapeutic genome editing.

260 citations

Journal ArticleDOI
TL;DR: This Review discusses the DNA repair pathways that underlie genome editing and recent improvements and strategies to yield desired genomic alterations in cells and organisms.
Abstract: Eukaryotic cells deploy overlapping repair pathways to resolve DNA damage. Advancements in genome editing take advantage of these pathways to produce permanent genetic changes. Despite recent improvements, genome editing can produce diverse outcomes that can introduce risks in clinical applications. Although homology-directed repair is attractive for its ability to encode precise edits, it is particularly difficult in human cells. Here we discuss the DNA repair pathways that underlie genome editing and strategies to favour various outcomes.

253 citations

Journal ArticleDOI
TL;DR: It is found that precision of DNA editing varies considerably among sites, with some targets showing one highly preferred indel and others displaying numerous infrequent indels, and these findings have important implications for clinical applications of CRISPR technology.

175 citations

Journal Article
TL;DR: It is shown that LNP-siRNA systems can exhibit progressively more bilayer structure as the proportion of bilayer DSPC lipid is increased, suggesting that the core of LNPs can exhibit a continuum of nanostructures depending on the proportions and structural preferences of component lipids.
Abstract: Previous work has shown that lipid nanoparticles (LNP) composed of an ionizable cationic lipid, a poly(ethylene glycol) (PEG) lipid, distearoylphosphatidylcholine (DSPC), cholesterol, and small interfering RNA (siRNA) can be efficiently manufactured employing microfluidic mixing techniques. Cryo-transmission electron microscopy (cryo-TEM) and molecular simulation studies indicate that these LNP systems exhibit a nanostructured core with periodic aqueous compartments containing siRNA. Here we examine first how the lipid composition influences the structural properties of LNP–siRNA systems produced by microfluidic mixing and, second, whether the microfluidic mixing technique can be extended to macromolecules larger than siRNA. It is shown that LNP–siRNA systems can exhibit progressively more bilayer structure as the proportion of bilayer DSPC lipid is increased, suggesting that the core of LNP–siRNA systems can exhibit a continuum of nanostructures depending on the proportions and structural preferences of component lipids. Second, it is shown that the microfluidic mixing technique can also be extended to encapsulation of much larger negatively charged polymers such mRNA (1.7 kb) or plasmid DNA (6 kb). Finally, as a demonstration of the generality of the microfluidic mixing encapsulation process, it is also demonstrated that negatively charged gold nanoparticles (5 nm diameter) can also be efficiently encapsulated in LNP containing cationic lipids. Interestingly, the nanostructure of these gold-containing LNP reveals a “currant bun” morphology as visualized by cryo-TEM. This structure is fully consistent with LNP–siRNA structure predicted by molecular modeling.

129 citations