scispace - formally typeset
Search or ask a question
Author

Anders Nielsen

Bio: Anders Nielsen is an academic researcher from Technical University of Denmark. The author has contributed to research in topics: Turbulence & Tokamak. The author has an hindex of 49, co-authored 252 publications receiving 11198 citations. Previous affiliations of Anders Nielsen include University of Innsbruck & European Atomic Energy Community.
Topics: Turbulence, Tokamak, Vortex, Divertor, Vorticity


Papers
More filters
Journal ArticleDOI
TL;DR: The glmmTMB package fits many types of GLMMs and extensions, including models with continuously distributed responses, but here the authors focus on count responses and its ability to estimate the Conway-Maxwell-Poisson distribution parameterized by the mean is unique.
Abstract: Count data can be analyzed using generalized linear mixed models when observations are correlated in ways that require random effects However, count data are often zero-inflated, containing more zeros than would be expected from the typical error distributions We present a new package, glmmTMB, and compare it to other R packages that fit zero-inflated mixed models The glmmTMB package fits many types of GLMMs and extensions, including models with continuously distributed responses, but here we focus on count responses glmmTMB is faster than glmmADMB, MCMCglmm, and brms, and more flexible than INLA and mgcv for zero-inflated modeling One unique feature of glmmTMB (among packages that fit zero-inflated mixed models) is its ability to estimate the Conway-Maxwell-Poisson distribution parameterized by the mean Overall, its most appealing features for new users may be the combination of speed, flexibility, and its interface’s similarity to lme4

4,497 citations

Journal ArticleDOI
TL;DR: The basic components and the underlying philosophy of ADMB are described, with an emphasis on functionality found in no other statistical software, and the main advantages are flexibility, speed, precision, stability and built-in methods to quantify uncertainty.
Abstract: Many criteria for statistical parameter estimation, such as maximum likelihood, are formulated as a nonlinear optimization problem. Automatic Differentiation Model Builder (ADMB) is a programming framework based on automatic differentiation, aimed at highly nonlinear models with a large number of parameters. The benefits of using AD are computational efficiency and high numerical accuracy, both crucial in many practical problems. We describe the basic components and the underlying philosophy of ADMB, with an emphasis on functionality found in no other statistical software. One example of such a feature is the generic implementation of Laplace approximation of high-dimensional integrals for use in latent variable models. We also review the literature in which ADMB has been used, and discuss future development of ADMB as an open source project. Overall, the main advantages of ADMB are flexibility, speed, precision, stability and built-in methods to quantify uncertainty.

1,753 citations

Journal ArticleDOI
TL;DR: TMB is an open source R package that enables quick implementation of complex nonlinear random effect (latent variable) models in a manner similar to the established AD Model Builder package, and is designed to be fast for problems with many random effects and parameters.
Abstract: TMB is an open source R package that enables quick implementation of complex nonlinear random effects (latent variable) models in a manner similar to the established AD Model Builder package (ADMB, http://admb-project.org/; Fournier et al. 2011). In addition, it offers easy access to parallel computations. The user defines the joint likelihood for the data and the random effects as a C++ template function, while all the other operations are done in R; e.g., reading in the data. The package evaluates and maximizes the Laplace approximation of the marginal likelihood where the random effects are automatically integrated out. This approximation, and its derivatives, are obtained using automatic differentiation (up to order three) of the joint likelihood. The computations are designed to be fast for problems with many random effects (≈ 106 ) and parameters (≈ 103 ). Computation times using ADMB and TMB are compared on a suite of examples ranging from simple models to large spatial models where the random effects are a Gaussian random field. Speedups ranging from 1.5 to about 100 are obtained with increasing gains for large problems. The package and examples are available at http://tmb-project.org/.

533 citations

Journal ArticleDOI
TL;DR: TMB as discussed by the authors is an open source R package that enables quick implementation of complex nonlinear random effect (latent variable) models in a manner similar to the established AD Model Builder package (ADMB, this http URL).
Abstract: TMB is an open source R package that enables quick implementation of complex nonlinear random effect (latent variable) models in a manner similar to the established AD Model Builder package (ADMB, this http URL). In addition, it offers easy access to parallel computations. The user defines the joint likelihood for the data and the random effects as a C++ template function, while all the other operations are done in R; e.g., reading in the data. The package evaluates and maximizes the Laplace approximation of the marginal likelihood where the random effects are automatically integrated out. This approximation, and its derivatives, are obtained using automatic differentiation (up to order three) of the joint likelihood. The computations are designed to be fast for problems with many random effects (~10^6) and parameters (~10^3). Computation times using ADMB and TMB are compared on a suite of examples ranging from simple models to large spatial models where the random effects are a Gaussian random field. Speedups ranging from 1.5 to about 100 are obtained with increasing gains for large problems. The package and examples are available at this http URL.

506 citations

Posted ContentDOI
01 May 2017-bioRxiv
TL;DR: A new R package, glmmTMB, is presented, that increases the range of models that can easily be fitted to count data using maximum likelihood estimation and is faster than packages that use Markov chain Monte Carlo sampling for estimation.
Abstract: Ecological phenomena are often measured in the form of count data. These data can be analyzed using generalized linear mixed models (GLMMs) when observations are correlated in ways that require random effects. However, count data are often zero-inflated, containing more zeros than would be expected from the standard error distributions used in GLMMs, e.g., parasite counts may be exactly zero for hosts with effective immune defenses but vary according to a negative binomial distribution for non-resistant hosts. We present a new R package, glmmTMB, that increases the range of models that can easily be fitted to count data using maximum likelihood estimation. The interface was developed to be familiar to users of the lme4 R package, a common tool for fitting GLMMs. To maximize speed and flexibility, estimation is done using Template Model Builder (TMB), utilizing automatic differentiation to estimate model gradients and the Laplace approximation for handling random effects. We demonstrate glmmTMB and compare it to other available methods using two ecological case studies. In general, glmmTMB is more flexible than other packages available for estimating zero-inflated models via maximum likelihood estimation and is faster than packages that use Markov chain Monte Carlo sampling for estimation; it is also more flexible for zero-inflated modelling than INLA, but speed comparisons vary with model and data structure. Our package can be used to fit GLMs and GLMMs with or without zero-inflation as well as hurdle models. By allowing ecologists to quickly estimate a wide variety of models using a single package, glmmTMB makes it easier to find appropriate models and test hypotheses to describe ecological processes.

231 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a model is described in an lmer call by a formula, in this case including both fixed-and random-effects terms, and the formula and data together determine a numerical representation of the model from which the profiled deviance or the profeatured REML criterion can be evaluated as a function of some of model parameters.
Abstract: Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer.

50,607 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI

6,278 citations

Journal Article
TL;DR: This research examines the interaction between demand and socioeconomic attributes through Mixed Logit models and the state of art in the field of automatic transport systems in the CityMobil project.
Abstract: 2 1 The innovative transport systems and the CityMobil project 10 1.1 The research questions 10 2 The state of art in the field of automatic transport systems 12 2.1 Case studies and demand studies for innovative transport systems 12 3 The design and implementation of surveys 14 3.1 Definition of experimental design 14 3.2 Questionnaire design and delivery 16 3.3 First analyses on the collected sample 18 4 Calibration of Logit Multionomial demand models 21 4.1 Methodology 21 4.2 Calibration of the “full” model. 22 4.3 Calibration of the “final” model 24 4.4 The demand analysis through the final Multinomial Logit model 25 5 The analysis of interaction between the demand and socioeconomic attributes 31 5.1 Methodology 31 5.2 Application of Mixed Logit models to the demand 31 5.3 Analysis of the interactions between demand and socioeconomic attributes through Mixed Logit models 32 5.4 Mixed Logit model and interaction between age and the demand for the CTS 38 5.5 Demand analysis with Mixed Logit model 39 6 Final analyses and conclusions 45 6.1 Comparison between the results of the analyses 45 6.2 Conclusions 48 6.3 Answers to the research questions and future developments 52

4,784 citations